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Abstract:
Minimum miscibility pressure (MMP) is a key variable for monitoring miscibility between
reservoir fluid and injection gas. Experimental and non-experimental methods are used
to estimate MMP. Available miscibility correlations attempt to predict the minimum
miscibility pressure for a specific type of gas. Here an artificial neural network (ANN)
model is applied to a dataset involving 251 data records from around the world in a novel
way to estimate the gas-crude oil MMP for a wide range of injected gases and crude
oil compositions. This approach is relevant to sequestration projects in which injected
gas compositions might vary significantly. The model is correlated with the reservoir
temperature, concentrations of volatile (C1 and N2) and intermediate (C2, C3, C4, CO2 and
H2S) fractions in the oil (Vol/Inter), C5+ molecular weight fractions in the oil and injected
gas specific gravity. A key benefit of the ANN model is that MMP can be determined with
reasonable accuracy for a wide range of oil and gas compositions. Statistical comparison of
predictions shows that the developed ANN model yields better predictions than empirical-
correlation methods. The ANN model predictions achieve a mean absolute percentage
error of 13.46%, root mean square error of 3.6 and Pearson’s correlation coefficient of
0.95. Sensitivity analysis reveals that injected gas specific gravity and temperature are
the most important factors to consider when establishing appropriate miscible injection
conditions. Among the available published correlations, the Yellig and Metcalfe correlation
demonstrates good prediction performance, but it is not as accurate as the developed ANN
model.

1. Introduction

1.1 Minimum miscibility pressure (MMP)

Oil production typically involves three stages of recovery:
Primary, sceondary, and tertiary. During primary recovery, oil
is produced from wells by either gas cap expansion, aquifer
expansion, dissolved gas expansion, rock and fluid expan-
sion, gravity drainage or a combination of these mechanisms.
During secondary recovery external energy is introduced to
maintain reservoir pressure or, at least, to slow down reservoir
pressure depletion. Typically, the oil recovery factor reaches
some 35% or higher after the combined effects of both primary
and secondary recovery processes, depending upon reservoir
and fluid properties. Tertiary or enhanced oil recovery methods
(EOR) are used to mobilize at least some of the 65% or so
of oil remaining in a reservoir and usually commences after

many years of primary and secondary recovery from mature
oil fields.

EOR techniques are increasing applied to mature oil fields,
and in some cases EOR mechanisms are being instigated
much earlier in a field’s development cycles in order to gain
maximum benefits from them. There are many different EOR
techniques now applied and are commonly categorized into
four groups: Chemical, thermal, microbial and gas flooding.
CO2 is the main fluid which is used in gas flooding. Other
common fluids are hydrocarbon gas such as methane (often
enriched with quantities of light natural gas liquids -NGLs,
e.g., ethane (C2), propane (C3 and butane (C4)), nitrogen and
exhaust or flue gases.

The miscibility of injected gas, of whatever composition,
and crude oil in a sub-surface reservoir, plays a considerable
role in the success of gas injection projects. A key metric
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to establish in such projects is minimum miscibility pressure
(MMP). It is the lowest pressure at miscibility is established
between gas and oil at a specified constant temperature.
Crucially at MMP, the interfacial tension is nearly zero and
no interface exists between oil trapped in the reservoir and
the injected/displacing fluid. If the crude oil in a reservoir
and the injection gas form a single phase as a consequence
of their initial contact, they are referred to as first contact
miscible (FCM) (Green and Willhite, 1998). FCM fluids are
relatively unusual. More commonly injected gas and crude
oil develop miscibility over time by progressive mass transfer
between the phases. In such cases they are referred to as
multi-contact miscible (MCM) (Green and Willhite, 1998).
MCM is associated with various reservoir drive mechanisms
(e.g., vaporizing gas, condensing gas, and the combination of
condensing and vaporizing gas) (Zick, 1986).

1.2 Methods for determining MMP

There are different approaches to estimating/predicting
MMP, which can be grouped into two categories: Experimental
and non-experimental methods. MMP is often established
through slim-tube experiments (Yellig and Metcalfe, 1980)
and represent the standard procedure for its determination.
However, other experimental techniques are used to deter-
mine MMP. These include: Rising bubble/falling drop method
(Zhang et al., 2018); mixing-cell method (Stalkup, 1983),
multiple-mixing cell method (Ahmadi and Johns, 2011), in-
terface laser light scattering spectroscopy (ILLS) (Dorshow,
1995), surface laser light scattering spectroscopy (SLLS) (Dor-
show, 1995); and, vanishing interfacial tension (VIFT) method
(Rao, 1997; Ahmad et al., 2016). Experiments of this type are
time-consuming and costly; therefore, it is beneficial where
possible to employ accurate mathematical (non-experimental)
determinations of MMP.

There are five distinct categories of non-experimental
methods to estimate MMP (Ahmadi-Rahmatabadi, 2011).
These are: Empirical correlations (see section 2); ternary rep-
resentation/limiting tie-lines (Whitson and Michelsen, 1989);
slim-tube simulations (El-Sharkawy, 1992), mixing-cell mod-
els (Yuan, 2003) and analytical methods (Orr, 2007).

Ahmed (2000) applied the Peng Robinson equation of state
(EoS) to estimate MMP, introducing a miscibility function
to aid in the prediction of the required injection pressure to
achieve miscible gas injection. Fazali et al. (2013) combined
random-mixing rules with the Peng-Robinson (PR) EoS to
approximate the phase behavior of reservoir fluids (crude oil
and gas) and to predict MMP for reservoir oil. Yuan and Johns
(2005) proposed an analytical model from predicting MMP
based upon characteristic theory. That approach decreased
the number of equations and unknown variables involved in
the calculation of MMP and helped to avoid false solutions.
Yuan et al. (2005) developed a MMP prediction formula for
pure and impure CO2 injection gases applying equations of
state. The input parameters for that formula were: Reservoir
temperature, C7+ molecular weight of oil, intermediate hydro-
carbon molecules (C2 to C6) in the crude oil expressed as a

percentage. The objective of that model was to be effective
across a board range of the input variables.

In recent years, several artificial intelligence and optimiza-
tion methods have been applied to MMP prediction, but these
have been focused on relatively specific and narrow ranges of
injection gas compositions. Huang et al. (2003) developed an
ANN model to estimate CO2 MMP of crude oils for pure and
impure gas compositions. They demonstrated that their ANN
model for CO2 MMP prediction could distinguish the effects
of different contaminants within the CO2 gases, and the levels
of contaminants that could be tolerated for miscible injection.
Emera and Sarma (2005) demonstrated that a model applying
a genetic algorithm could provide more accurate predictions of
CO2 MMP than empirical correlations. That model involved
inputs of reservoir temperature, C5+ molecular weight of oil
and the ratio of volatiles (C1 and N2) to intermediates (C2-C4,
H2S, and CO2) in oil.

Shokir (2007) proposed an alternating conditional expec-
tation optimization algorithm for improving MMP prediction
of impure and pure CO2 injected gases, validating the model
with experimental analysis. Dehghani et al. (2008) developed
a hybrid genetic algorithm-ANN model for predicting MMP
applying it successfully to both CO2 and natural gas streams.
They demonstrated that it performed better than the con-
ventional empirical equations particularly under conditions of
limited field-specific data. In a similar approach Nezhad et al.
(2011) successfully combined a feed-forward neural network
with a particle swarm optimization (PSO) algorithm to predict
CO2 MMP.

Shokrollahi et al. (2013) used 147 data points from the lit-
erature to develop and evaluate a Least-Squares Support Vector
Machine (LSSVM) algorithm to predict pure and impure CO2
MMP. They considered outlier diagnosis for their dataset in
order to identify unreliable data records. Ahmadi et al. (2015)
also employed LSSVM combined with various evolution-
ary optimization algorithms (e.g., genetic algorithm, particle
swarm optimization, and imperialist competitive algorithm) to
develop and compare models to predict MMP. They demon-
strated that a hybrid GA-PSO-LSSVM produced the most
accurate results of the models they tested. The results showed
that the new models had an appropriate precision. Zhong
and Carr (2016) proposed a mixed-kernels function (MKF)
based support vector regression model (MKF-SVR) model for
predicting CO2 MMP, demonstrating its superior performance
compared to conventional empirical correlations. Tarybakhsh
et al. (2018) applied a genetic algorithm to optimize their SVR
model to achieve improved MMP predictions. Choubineh et al.
(2016) combined ANN with a cuckoo optimization algorithm
and a teaching learning-based optimization methodology to
predict CO2 MMP with a high level of accuracy. Ahmadi et al.
(2017) employed gene expression programming and Alomair
et al. (2015) adopted n alternating conditional expectation
algorithm to predict MMP.

The large number of machine learning methodologies de-
veloped in recent years highlights the significance of achieving
reliable MMP predictions. What the previously published
artificial intelligence and optimization methodologies demon-
strate convincingly is that when applied to a relatively narrow
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range of injected gas compositions and/or reservoir conditions
they outperform the conventional empirical correlations in
predicting MMP. What has not been demonstrated is that
such techniques can provide sufficiently accurate predictions
of MMP when applied to a much wider range of injection gas
compositions and crude oil reservoir conditions.

1.3 Study objectives

Here we develop and evaluate an artificial neural network
(ANN) model to predict the gas-crude oil MMP for a dataset
(251 data records from multiple published sources associated
with crude oil reservoirs from around the world) including
a wide range of injection gas compositions. This approach
is relevant to situations where gases of varied compositions
(e.g., flue gas collected from various industrial plants) are
injected into oil reservoirs for the purposes of sequestration
and enhanced oil recovery. As the injected gas composition
varies over a wide range from time to time it is useful
to be able to predict MMP for a wide range of potential
injected gas compositions. We also compare this ANN model
with experimental data and available literature correlations
to demonstrate its superior performance. In addition, using
a purpose-built Monte Carlo simulation sensitivity model,
we evaluate the effects and significance of key independent
metrics (i.e., reservoir temperature, concentration of volatile
and intermediate fractions in oil, C5+ molecular weight of oil
and injected gas specific gravity) on the accuracy of predicting
the gas-crude oil MMP (i.e., the dependent variable) across
such a wide range of conditions.

2. Empirical correlations
Most empirical correlations used historically for predicting

MMP involve regressions applied to experimental data (Yellig
and Metcalfe, 1980). Published miscibility correlations belong
to two distinct groups: Correlations related to MMP for pure
CO2 or gas mixtures involving CO2; correlations related to
MMP for other gas compositions. These correlations usually
require data inputs for just a few related metrics, e.g., reservoir
temperature, reservoir crude oil properties, injection fluid
properties.

Some of the more widely-applied correlations are con-
sidered here for comparison with our proposed analytical
method.

2.1 Cronquist correlation (1978)

Cronquist proposed the following regression (Eqs. 1 and
2) to predict MMP:

MMP = 0.11027× (1.8T +32)Y (1)

Y = 0.744206+(0.0011038MWC5+)+(0.0015279Vol) (2)

where T is reservoir temperature (◦C); MWC5+ is the molecular
weight of the pentanes-plus fraction of crude oil; and, Vol is
the mole percentage of volatile components (C1 and N2).

2.2 Lee correlation (1979)

Based on experimental data, Lee proposed an empirical
equation for predicting CO2 MMP. This correlation (Eqs. 3
and 4) depends only on reservoir temperature as the input
variable:

MMP = 7.3942×10b (3)

b = 2.772− 1519
492+1.8T

(4)

where T is reservoir temperature (◦C).
A key constraint in applying the Lee correlation is that if

the predicted MMP is less than the bubble point pressure (Pb),
then the CO2 MMP = Pb.

2.3 Yellig & Metcalfe correlation (1980)

Yellig and Metcalfe derived a correlation (Eq. 5) for
estimating the CO2 MMP based on experimental data, also
depending only on reservoir temperature as the input variable:

MMP = 12.6472+0.015531× (1.8T +3.2)

+0.000124192× (1.8T +32)2 − 716.9427
1.8T +32

(5)

where T is reservoir temperature (◦C).
Again, the key constraint in applying the Yellig & Metcalfe

correlation is that if the predicted MMP is less than Pb, then
the CO2 MMP = Pb.

2.4 Alston et al. correlation (1985)

Alston et al. derived an empirical correlation (Eqs. 6 and
7) to estimate MMP for pure CO2 or gas mixtures involving
CO2; the pure or impure CO2 MMP. The input metrics are:
Reservoir temperature, molecular weight of the pentane-plus
fraction of the oil, the mole fraction of the oil intermediate
components (i.e., natural gas liquids C2 to C4, carbon dioxide
and hydrogen sulfide) and the mole fraction of volatile oil
components (i.e., methane and nitrogen).

MMP = 6.056×10−6 × (1.8T +32)1.06

×MW 1.78
C5+ ×

(
Vol

Interm

)0.136 (6)

When bubble point pressure (Pb) < 0.345 MPa:

MMP = 6.056×10−6 × (1.8T +32)1.06 ×MW 1.78
C5+ (7)

where T is reservoir temperature (◦C); MWC5+ is the molecular
weight of the oil pentanes-plus fraction; Vol is the mole
percentage of volatile (C1 and N2); and, Interm is the mole
fraction of the oil intermediate components (C2-C4, CO2 and
H2S).

In order to take into account of the effects of impurities
(i.e., the presence of C1, C2, C3, C4, N2 or H2S gases) in the
CO2 gas to be injected, the impure CO2 MMP is correlated
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Table 1. SFi for different components used in the Dong Correlation.

Component SFi

H2S 0.7

C1 2.5

N2 7.5

SO2 0.5

O2 5

(Eqs. 8 and 9) with the weighted-average pseudo-critical
temperature TCM of the injected gas and the pure CO2 MMP:

MMPimpure

MMPpure
=

(
87.8

1.8TCM +32

)( 1.935×87.8
1.8T+32 )

(8)

TCM = ∑
n
i=1Wi ×Tci (9)

where TCM is the weighted-average pseudo-critical temperature
(◦C).

The critical temperatures used for each component gas in
Eqs. 8 and 9 are the true critical temperatures except for H2S
and CO2, which are both assigned a uniform value of 51.85
◦C.

2.5 Dong correlation (1999)

Dong proposed a correlation (Eqs. 10 and 11) for predict-
ing the impure CO2 MMP involving the mole average critical
temperature Tac as the input variable:

MMPimpure

MMPpure
=

(
Tac

304.2

)4

(10)

Tac = ∑
n
i=1Xi ×SFi ×Tci (11)

where SFi is the strength of species “i” in changing the
apparent critical temperature of the flue gas relative to the
critical temperature of CO2. The SFi values for various gases
are listed in Table 1. For CO2 and other components not listed
in Table 1, SFi is equal to 1. Tci is the critical temperature of
gas component “i” (◦K); and, Xi is the mole fraction of gas
component “i”.

2.6 Hudgins et al. correlation (1990)

Hudgins et al. derived a correlation for pure N2 MMP (Eqs.
12 to 14) based on an experimental study of nitrogen miscible
flooding associated with an EOR application for light crude
oil:

MMP = 5568× e−R1 +3641× e−R2 (12)

R1 = 792.06×
(

C2 −R5

W

)
(13)

R2 = 2.158×106 ×
(

C5.632
1
W

)
(14)

W = MWC7+×T 0.25 (15)

where T is the temperature (◦F); C1 is the mole fraction of
methane; and, C2-C5 is the mole fraction of C2-C5.

3. Methodology
Both experimental methods and empirical correlations for

estimating MMP have their limitations. Experimental methods
are expensive and time-consuming. Empirical correlations
generally tend to work well for the specific oil reservoirs and
conditions from which their underlying dataset is derived; they
are typically unable to be applied globally across all types of
crude oil reservoir (Yellig and Metcalfe, 1980). Therefore, it
is beneficial to develop analytical models to calculate MMP
for various injection gases under a wide range of conditions.
Various machine learning and artificial intelligence techniques
lend themselves to the type of analysis required. Artificial
neural networks (ANN) are one such method.

3.1 Overview of artificial neural network (ANN)

ANN represents a machine learning tool well suited to the
prediction of variables dependent on complex, often poorly
defined, nonlinear functions that define their relationships
with a number of independent or variably correlated input
variables for which measurements are available (Krenker et
al., 1995). Back propagation (BP) is well-established ANN
training algorithm. There are two pathways that constitute the
typical ANN; the feed-forward pathway and the backward
pathway. The feed-forward pathway is configured when setting
up a feed-forward ANN. This involves defining the initial
weights, which are varied through various iterations of a
simulation involving BP training of a neural network (Krenker
et al., 1995). The network weights/biases are progressively ad-
justed during back-propagation training, leading to the gradual
improvement of the networks prediction accuracy. Training
requires a number of data records from a dataset for which
both input metric values and associated dependent variable
values (i.e., gas-crude oil MMP) are known (i.e., measured
experimentally). As training progresses, the weights applied to
nodes within the ANN are sequentially adjusted to minimize
an objective function (e.g., the mean square error (MSE) of the
estimated versus measured value of the dependent variable, in
this case gas-crude oil MMP).

A five-layer feed-forward ANN is illustrated in Fig. 1. This
is feed-forward neural network (FNN) consists of three distinct
types of processing layers; the input layer, output layer and
three hidden layers between the input and output layers. Each
layer consists of a number of nodes or neurons, each with an
associated activation function. Fig. 1 consists of an input layer
involving four neurons, three hidden layers with nine, ten and
nine neurons, respectively, and an output layer with a single
neuron. It is possible to vary the number of neurons in the
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Artificial Neural Network (ANN) Structure Suited to the Prediction of Gas - Crude Oil 
Minimum Miscible Pressure (MMP) for a Wide Range of Gas and Oil Compositions
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Fig. 1. Schematic of multilayer feed-forward neural network (FNN) applied in this study.

input and hidden layers and the number of hidden layers to
suit the complexity of the model and number of input variables
involved. Input variables are introduced to the network via
specific nodes in the input layer. The input nodes are then
each connected to the nodes of the first hidden layer. The
nodes of the first hidden layer are connected to the nodes of
the second hidden layer, and so on. The nodes of the third
hidden layers are linked to the single node of the output layer
which delivers the prediction of the dependent variable. The
mathematics of the algorithms involved in FNN applying a
BP training algorithm are now well documented and widely
applied (Goh, 1995; Al-Alawi et al., 2005; Zarenezhad and
Aminian, 2011) and are therefore not repeated here. Clearly,
the results obtained using FNN can only be as accurate as
the measurements of the input variables in the underlying
training data records. Careful scrutiny of the input data quality
is therefore essential if accurate predictions are to be produced
via the FNN method.

3.2 Data collection

For the ANN model proposed the following input variables
are involved in gas-crude oil MMP prediction: Reservoir
temperature, concentration of volatile components (C1 and N2)
in the injected gas; concentrations of intermediate (C2, C3, C4,
CO2 and H2S) fractions in oil; C5+ molecular weight of oil;
and, injected gas specific gravity.

The dataset used here involves 251 data records compiled
from 32 published studies (Rathmell et al., 1971; Jacobson,
1972; Dicharry et al., 1973; Holm and Josendal, 1974; Yellig
and Metcalfe, 1980; Cobb and Goodrich, 1981; Gardner et al.,
1981; Graue and Zana, 1981; Frimodig et al., 1983; Cardenas
et al., 1984; Alston et al., 1985; Glaso, 1985; Sebastian et
al., 1985; Firoozabadi and Aziz, 1986; Hanssen, 1988; Hand
and Pinczewski, 1990; Hudgins et al., 1990; Sebastian and
Lawrence, 1992; Thomas et al., 1994; Yurkiw and Flock, 1994;
Harmoon and Grigg, 1998; Srivastava and Huang, 1998; Rao

Table 2. Minimum and maximum values of the data variables for the 251
data records in the dataset.

Data Unit Min Max

Reservoir temperature (In-
put)

degrees
fahrenheit 90 340

Vol/Inter (Input) unitless 0 37.84

MWC5+ (Input) lb/lbmol 113.5605 302.5

Injected gas specific grav-
ity (Input) unitless 0.556067 1.574349

MMP (Output) psia 948 9115.622

and Lee, 2000; Srivastava, 2000; Dong et al., 2001; Jaubert
et al., 2002; Ayirala, 2005; Bon et al., 2005; Bon et al.,
2006; Al-Netaifi, 2008; Ren et al., 2011; Adekunle, 2014) with
each record containing data for the input variables selected.
The dataset includes: Sixty-seven records involving pure car-
bon dioxide, thirty-six records involving pure nitrogen, eight
records involving pure methane, and one record involving pure
ethane. The remaining data records in the data set are impure
gas (i.e., mixtures of two or more gases). Due to the diversity
of gases represented in the dataset the, specific gravity of the
gases relative to air ranges from 0.55 to 1.57. The diversity and
number of data records involved in the compiled dataset are
significant. They set this study apart from previously published
machine learning attempts to predict gas-crude oil MMP. The
details of the data set are provided in Appendix A and the
individual data records, their sources and gas compositions
are provided in a supplementary data file.

The data records of the dataset are divided, 75%, 10% and
15% into training, validation and testing subsets, respectively.
The ranges of values represented by the input and output
variables in the full dataset are listed in Table 2. These values
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Table 3. The FNN structure and adjustment/transfer functions applied to the gas-crude oil MMP dataset. “logsig” refers to log-sigmoidal transfer function
and “purelin” refers to a transfer function.

Parameter Value

Number of neuron in hidden layer 1 9

Number of neuron in hidden layer 2 10

Number of neuron in hidden layer 3 9

Activation function of input-hidden layer 1 logsig

Activation function of hidden layer 1-hidden layer 2 purelin

Activation function of hidden layer 2-hidden layer 3 purelin

Activation function of hidden layer 3-output layer purelin

highlight the wide ranges of input-variable values and gas-
crude oil MMP (output) values covered by this comprehensive
dataset.

3.3 ANN model developed to predict MMP

The data for each variable in each data record (Table 2) is
normalized to values between 0 and 1 using the minimum and
maximum values. Using normalized data in ANN avoids the
introduction of biases associated with the different scales and
units of the variables involved. By testing different numbers
of hidden layers and neurons in the network, a range of
adjustment/transfer functions are assigned to the input-hidden,
hidden-hidden-hidden and hidden-output layers, resulting in
different prediction accuracies for the gas-crude oil MMP.
Table 3 shows the network structure established for this dataset
based upon those tests.

4. Results and discussion

4.1 Gas-crude oil MMP analysis based on ANN
model

Results of the ANN model developed for the prediction
of gas-crude oil MMP applied to the training, validation and
testing subsets of the dataset (as described in section 3) are
illustrated in Figs. 2 to 4. These figures compare the calculated
MMP (output/prediction) values with the actual measured
MMP values for the dataset.

The predicted versus measured MMP values displayed in
Figs. 2 to 4 are significantly correlated, and the linear correla-
tion line (red) positioned close to the y = x line. Moreover, the
Pearson’s correlation coefficients for the training, validation
and testing subsets are 0.96, 0.93 and 0.93, respectively. This
indicates that the prediction performance of the ANN model is
acceptable, even though it is applied to such a diverse dataset
in terms of injected gas compositions. Nevertheless, there are
some significant outlier points which the proposed model is
incapable of predicting sufficient preciseness, most of them
are related to high minimum miscibility pressures. The main
reason for such outlying predictions is that there are a low

number of data records available for reservoir pressures greater
than 6000 psia. Another contributing factor to these outliers is

Table 4. Statistical analysis of the accuracy of MMP prediction by six
empirical models and the ANN model proposed in this study applied to

those data records relevant to the specific correlation range. Full data set of
251 data records applies to the ANN model only.

Prediction methods MAPE RMSE R

Cronquist 21.31 5.51 0.6669

Lee 20.41 5.86 0.6881

Yellig and Metcalfe 14.92 4.46 0.7302

Alston 27.55 5.99 0.6254

Dong 35.40 7.15 0.4766

Hudgins 49.04 18.93 0.5754

ANN Model 13.46 3.60 0.9500

the wide range of values associated with each input variable
across the entire dataset (Table 2).

Figs. 5 to 7 illustrate predicted and measured MMP versus
data index. These trends demonstrate that overall the ANN
model achieves a high level of accuracy in its MMP prediction.
The outlier data records (i.e., greatest mis-match between
predicted and measured MMP values) that do exist are spread
across the data range in each of the data subsets.

4.2 Comparison of ANN model and empirical corre-
lations

The prediction performance comparison of the ANN model
developed here compared with the six empirical correlations
described in section 2 are assessed using the standard statistical
accuracy metrics: Pearson’s correlation coefficient (R); root
mean square error (RMSE); and, mean absolute percentage
error (MAPE). As these empirical correlations were each
developed for quite specific conditions (i.e., gas types) it is
not surprising that they do not perform well when applied
to the diverse dataset evaluated in this study. Indeed, as
shown in Table 4 and Figs. 8 to 10, the proposed ANN
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Fig. 2. ANN model MMP prediction versus measured MMP for the 188 data records of the training subset of the database.
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Fig. 3. ANN model MMP prediction versus measured MMP for the 25 data records of the validation subset of the database.
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Fig. 4. ANN model MMP prediction versus measured MMP for the 38 data records of the testing subset of the database.
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model performs much better than the empirical correlations
when applied to this diverse dataset. The Yellig & Metcalfe
empirical correlation performs better than the other empirical
correlations when applied to this diverse dataset, but not as
well as the ANN model developed here.

At first inspection of the results it may seem surprising
that the Yellig and Metcalfe (1980) correlation which uses
only one input variable (reservoir temperature) has an average
absolute error of 14.9% compare to 13.5% for the ANN model
developed here, which uses five input variables. However, the
Yellig and Metcalfe (1980) correlation is only used for pure
CO2 data records in our dataset, whereas the ANN model is
applied to all 251 data records. Moreover, the ANN model
outperforms the Yellig and Metcalfe (1980) correlation for
the three-error metrics considered: For the Yellig and Metcalfe
(1980) correlation, MAPE, RMSE, and R are 14.92, 4.46 and
0.73, respectively. On the other hand, for the ANN model
MAPE, RMSE, and R are 13.46, 3.6, and 0.95, respectively.

Table 4 highlights that the proposed ANN model has the
smallest MAPE (13.46%), RMSE (3.6%) and highest R (0.95)
of the models evaluated when applied to the diverse MMP
dataset.

4.3 Sensitivity analysis applied to the ANN predic-
tion model

A Monte Carlo simulation was performed to provide sen-
sitivity analysis of the proposed ANN model for predicting
MMP for a wide range of injected gas compositions. The
focus of the sensitivity analysis is to establish the individual
and collective impacts of the four input variables on the
MMP predictions. By running thousands of iterations of the
simulation selecting values for each input variable (normalized

on a scale of 0 to 1) using random numbers between 0 and 1
and monitoring the impact on the predicted MMP values it is
possible to identify the dependence of the dependent variable
(gas-crude oil MMP) on each of the input variables (i.e., reser-
voir temperature, concentration of volatile and intermediate
fractions in oil, C5+ molecular weight of oil and injected gas
specific gravity).

Fig. 11 illustrates the impact of each input variable indi-
vidually on the MMP prediction, revealing that these impacts
are highly non-linear and distinct for each input variable.

There is a direct positive relationship between MMP and
reservoir temperature (Fig. 11a), highlighting that as reservoir
temperature rises MMP increases. The relationships between
the other three input variables and MMP are more complex.
In the lower half of their value ranges the concentrations of
volatile and intermediate fractions in oil (Fig. 11b) and C5+
molecular weight of oil (Fig. 11c) both demonstrate positive
relationships with the predicted MMP. However, in the upper
half of their value ranges these two input variables both show
a reversal of that relationship, albeit determined by relatively
few data points. On the other hand, the specific gravity of
the injected gas (Fig. 11d) shows a negative relationship with
predicted MMP over the upper 70% of its value range versus
a moderate positive relationship over the lower 30% of its
value range. Of course, the lowest values in the specific gravity
range evaluated are related to methane, the intermediate values
belong mainly to nitrogen and the highest values are for
impure and pure carbon dioxide.

Fig. 12 displays the results of the simulation focused on
the relative impacts of the four input variables on predicted
gas-crude oil MMP. The lower graph reveals that injected gas
specific gravity has the most significant impact on the MMP
prediction, followed by reservoir temperature. The other two
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Fig. 12. Relative sensitivity of the prediction of MMP by the ANN model to each input metric when applied to the diverse MMP dataset established for
Monte Carlo simulation analysis.

variables clearly contribute to a lesser degree to the MMP
prediction. The upper graph (Fig. 12) expresses these relative
contributions in percentage terms. Clearly, if the ANN method-
ology is applied to a much narrower range of gas compositions,
as has been the case in previous machine learning methods
applied to MMP prediction, reservoir temperature would be
the most influential input variable on the MMP predictions
over that limited range.

5. Conclusions
A key parameter in miscible gas flooding of crude oil

reservoirs is the minimum miscibility pressure (MMP). The
ANN model developed in this study successfully estimates the
gas-crude oil MMP for a diverse dataset (251 data records)
encompassing a wide range of injected gas compositions
(specific gravity relative to air ranging from 0.55 to 1.57)
and reservoir crude oil compositions. This novel model is
based on four distinct input variables: Reservoir temperature;
concentrations of volatile (C1 and N2) and intermediate (C2,
C3, C4, CO2 and H2S) fractions in oil; C5+ molecular weight
fractions in the oil; and, injected gas specific gravity.

From the application of the ANN model developed to the
diverse MMP dataset the following conclusions can be drawn:

(1) A statistical comparison of the prediction accuracy of
the proposed model and six other commonly used empirical
correlations for MMP prediction reveals that the new ANN
model achieved significantly more accurate predictions of
MMP. ANN model has the smallest MAPE (13.46%), RMSE
(3.6%) and highest R (0.95) of the models evaluated when
applied to the diverse MMP dataset. These results confirm
that meaningful predictions of MMP can be derived for a
wide range of injected gas compositions by applying this
approach, making it potential useful for sequestration-EOR
projects using injected gas compositions that might vary over
time.

(2) Among the input parameters, simulation conducted for
sensitivity analysis revealed that injected gas specific gravity
and reservoir temperature are the input variables that have
the most significant impact on the predicted MMP values
by the ANN model. The volatile/intermediate fractions and
C5+ molecular weight of oil input metrics have much less
significant impacts on the predicted MMP values.

(3) Comparing the MMP prediction performance of the
published empirical correlations, based for the most part on
experimental studies of a narrow range of injected gas com-
positions, when applied to the diverse MMP dataset evaluated
here, it is the Yellig and Metcalfe correlation that performs
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better than the other empirical correlations evaluated when
applied to this wide range of gas compositions. The Yellig
and Metcalfe correlation achieved a mean absolute percentage
error of 14.92%, root mean square error of 4.46 and Pearson’s
correlation coefficient of 0.7302.

Nomenclature
ANN = Artificial Neural Network
BP = Backpropagation
EOR = Enhanced Oil Recovery
EoS = Equation of State
FNN = Feed Forward Neural Network
FCM = First Contact Miscibility
ILLS = Interface Laser Light Scattering Spectroscopy
LSSV M = Least-Squares Support Vector Machine
MAPE = Mean Absolute Percentage Error
MCM = Multi Contact Miscibility
MKF = Mixed-Kernels Function
MMP = Minimum Miscibility Pressure
MSE = Mean Square Error
PSO = Particle Swarm Optimization
PR = Peng-Robinson
R = Pearson’s Correlation Coefficient
RMSE = Root Mean Square Error
SLLS = Surface Laser Light Scattering Spectroscopy
V IFT = Vanishing Interfacial Tension
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Appendix A: Dataset description
The complete dataset compiled for and used in this study consists of 251 published data records. The details of each record

are included in the supplementary file comprising: The sources reference; measured values of each of the four input variables;
the percentage components making up the injected gas composition, and the minimum miscible pressure (MMP) constituting
the measured value of the dependent variable. The table below summarizes the dataset highlighting the wide range of MMP
it covers.

Source reference number Number of data records MMP/Psia

3 12 1164.5 - 2364.5

28 19 1375 - 4390

30 6 4850 - 6850

35 4 4814.5 - 6314.5

36 3 5114.5 - 6864.5

37 5 1750 - 2650

38 1 4090

39 4 2462.7 - 3063.2

40 2 2219 - 2393

41 10 1305.3 - 2320.6

42 3 4675- 5600

43 3 3350 - 3502

44 2 1594 - 2250

45 2 1540 - 2580

46 1 3400

47 1 4650

48 1 1000

49 30 948 - 2700

50 3 1500 - 5000

51 9 1740 - 3974

52 9 2135 - 2790

53 36 1283 - 2705

54 4 1189.5 - 1829.5

55 16 2340 - 5226

56 3 1850 - 2750

57 6 2030.5 - 9115.6

58 4 1708 - 3190

59 6 1889.5 - 5009.5

60 17 3754 - 7000

61 10 3582.4 - 7977

62 4 3916 - 4684.7

63 15 3205 - 5496


