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Abstract: In the present paper, an adaptive time-splitting scheme is introduced to investigate the problem of two-phase flow in
heterogeneous porous media. The pressure and saturation equations are coupled by the capillary pressure which is linearized in
terms of saturation. An IMplicit Pressure Explicit Saturation (IMPES) scheme is used to solve the problem under consideration.
We use the time schemes for the pressure and saturation equations. The external time interval is divided into two levels, the first
level is for the pressure, the second one is for the saturation. This method can reduce the computational cost arisen from the
implicit solution of the pressure equation and the rapid changes in saturation. The time-step size for saturation equation is adaptive
under computing and satisfying the Courant–Friedrichs–Lewy (CFL<1) condition. In order to show the well performance of the
suggested scheme, we introduce a numerical example of a highly heterogeneous porous medium. The adaptive time step-size is
shown in graphs as well as the water saturation is shown in contours.
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1. Introduction
The IMplicit Pressure Explicit Saturation (IMPES), is a

conditionally stable approach, solves the pressure equation
implicitly and updates the saturation explicitly. Hence it takes
very small time step size, in particular with heterogeneous
porous media. The IMPES scheme has been improved in sev-
eral versions (Young and Stephenson 1983; Lu, 2000; Coats,
2001; Chen et al., 2006; Kou and Sun 2010). The temporal dis-
cretization scheme is considered an important factor that affect
efficiency of numerical reservoir simulators. The application
of traditional single-scale temporal scheme is restricted by the
rapid changes of the pressure and saturation with capillarity
and concentrations if applicable. So, applying time splitting
strategies has a significant improvement to treating the gap
between the pressure and the saturation. Time splitting method

has been considered in a number of publications (Smolinski
et al., 1988; Belytschko and Lu, 1993; Singh and Bhallamudi,
1996; Smolinski et al. 1996; Singh and Bhallamudi, 1997;
Gravouil and Combescure, 2000; Klisinski, 2001; Bhallamudi
et al., 2003; Park et al., 2008; Sun and Geiser, 2008; Wang
et al., 2012; Wang et al., 2017). For example, in (Singh and
Bhallamudi, 1996; Singh and Bhallamudi, 1997), an explicit
subtiming scheme is provided. On the other hand, an implicit
time-stepping schemes have been proposed by Bhallamudi et
al. (2003). Similar methodology has been used to the problem
of flow and transport simulations in fractured porous media
(Park et al., 2008). VanderKwaak (1999) have introduced a
hybrid implicit-explicit scheme by treating implicitly some
portions of the domain under certain stability conditions,
while the rest of the domain is treated by the explicit time-
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stepping approach. Kou et al. (2011) have developed a mul-
tiscale time–splitting strategy for simulating two–phase flow
in fractured porous media. In El-Amin et al. (2016) we have
introduced nonlinear iterative IMPES-IMC (IMplicit Pressure
Explicit Saturation–IMplicit Concentration) scheme to solve
the flow equation of the model of nanoparticles transport in
porous media. Recently, El-Amin et al. (2017a) presented a
convergence analysis of the nonlinear iterative IMPES-IMC
method for a two-phase flow in porous media associated with
nanoparticle injection. The authors (El-Amin et al., 2017b)
have investigated the problem of nanoparticles transport in
fractured porous media, numerically using a multi-scale time-
splitting strategy. Also, they (El-Amin et al., 2017c) have
introduced a multi-scale adaptive time-splitting technique for
nonisothermal two-phase flow and nanoparticles transport in
heterogenous porous media. Recently, the discrete-fracture
model (DFM) of two-phase immiscible incompressible flow
including nanoparticles transport in fractured heterogeneous
porous media has been studied (El-Amin et al., 2017d).

This work is devoted to a time-stepping technique for the
modeling and simulation two–phase flow in porous media.
The IMPES scheme is employed to solve the problem under
consideration, and the CCFD method is used for the spatial
discretization. The time-stepping scheme is applied under
the CFL condition to adapting the time-steps sizes. Finally,
numerical experiments are provided. The paper is organized
as follows: The second section is devoted for the modeling
and mathematical formulation. The third section is devoted
to the time-stepping technique. The time-steps adaption is
provided in the fourth section. The CCFD spatial discretization
is introduced in Sec. 5. Then, Sec. 6 is devoted for numerical
tests, while the conclusions was presented in Sec. 7.

2. Modeling and Mathematical Formulation
This paper considers the problem of two-phase immiscible

incompressible flow in porous media. The governing equations
consists of water saturation and Darcy’s law. In the following
we introduce the governing equations briefly:

uα = − kα
µα
∇Φα, α = w, n (1)

kα = krαK, Φα = pα + ραg∇z, α = w, n

φ
∂sα
∂t

+∇ · uα = qα, α = w, n (2)

sw + sn = 1

where K is the permeability tensor K = kI, where I is
the identity matrix and k is a positive real number. φ is
the porosity, g is the gravitational acceleration, and z is the
depth. uα,Φα, pα, µα, ρα, kα, krα, qα, sα are, respectively, the
velocity, the pressure potential, the pressure, the viscosity, the
density, the effective permeability, the relative permeability,
the external mass flow rate, and the saturation of the phase α.
w stands for the wetting phase (water), and n stands for the
nonwetting phase (oil).

Providing the following definitions:

The capillary pressure: pc (sw) = pn − pw.
The total velocity: ut = uw + un.
The flow fraction: fw = λw/λt.
The phase mobility: λα = krα/µα.
The total mobility: λt.
The capillary pressure potential: Φc = (ρn − ρw) g∇z +

pc.
The total source mass transfer: qt = qw + qn.
After some mathematical manipulations and referring to

Hoteit and Firoozabadi (2008), the pressure equation can be
rewritten as,

∇ · ut = −∇ · λtK∇Φw −∇ · λnK∇Φc = qt (3)

Because this equation contents the capillary pressure which
is a function of saturation, it will be coupled with the following
saturation equation to calculate the pressure:

φ
∂sw
∂t
− qw = −∇ · λwK∇Φw (4)

However, the saturation is updated using the following
form,

φ
∂sw
∂t
− qw = −∇ · (fwua) (5)

where uw = fwua and ua = −λtK∇Φw .
In this study, given the the normalized wetting phase

saturation,

S =
sw − swr

1− snr − swr
, 0 ≤ S ≤ 1

the capillary pressure is defined as,

pc = −pe logS

and the relative permeabilities are defined as,

krw = k0rwS
2, krn = k0rn (1− S)

2

where

k0rw = krw (S = 1) , k0rw = krw (S = 1)

where pe is the capillary pressure parameter, swr is the irre-
ducible water saturation and snr is the residual oil saturation
after water flooding.

Consider the computational domain Ω with the boundary
∂Ω which is subjected to Dirichlet ΓD and Neumann ΓN
boundaries, where ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ø. At
the beginning of the injection process, we have,

sw = s0w, in Ω at t = 0 (6)

The boundary conditions are given as,

pw (or pn) = pD on ΓD (7)

ut · n = qN , sw = SN , on ΓN (8)
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Table 1. Values of the physical parameters.

Parameter Value Units

Swr 0.001 –

Snr 0.001 –

φ 0.3 –

µw 1 cP = 1.0×10−3Pa · s

µn 0.45 cP

krw0 1 –

kro0 1 –

Bc 50 bar = 1.0×105 Pa

Total grid-cells 6000 –

Outer loop, k 50, 100, 200 –

where n is the outward unit normal vector to ∂Ω, pD is
the pressure on ΓD and qN the imposed inflow rate on ΓN ,
respectively.

3. Adaptive Time-Splitting Method
In the time splitting method, the pressure is coupled with

the saturation in each time-step. The time-step size for the
pressure can be taken larger than the one of saturation. The
total time interval of the pressure, [0, T ] is divided into Np,
time-steps as 0 = t0 < t1 < · · · < tNp=T . Thus, the time-
step length assigned for the pressure is, ∆tk = tk+1 − tk. On
the other hand, as the saturation varies more rapidly than the
pressure, we use a smaller time-step size for the saturation
equation. That is, each interval, (tk, tk+1], will be divided
into Np,s subintervals as (tk, tk+1] = ∪Np,s−1

l=0 (tk,l, tk,l+1].
Therefore, the governing equations, (3) and (4) are solved
based on the adaptive time-splitting technique. The capillary
pressure function, Φc is linearized in terms of the saturation
using the following formula,

Φc (s∗w) ∼= Φc
(
skw

)
+ Φ′c

(
skw

) [
sk+1
w − skw

]
(9)

where Φ′c is derivative of Φc. The quantity, [sk+1
w − skw], can

be calculated from the saturation equation,

sk+1
w − skw =

∆tk

φ

[
qk+1
w −∇ · λt

(
skw

)
K∇Φk+1

w

]
(10)

In addition to the pressure equation,

−∇ · λt
(
skw

)
K∇Φk+1

w −∇ · λn
(
skw

)
K∇Φc (s∗w) = qk+1

t

(11)
Then, the above coupled system (9), (10) and (11) is

solved implicitly to obtain the pressure potential. Therefore,
the saturation is updated explicitly with using the upwind
scheme for the convection term as,

φ
sk,l+1
w − sk,lw

∆tl
+∇ ·

(
fkwuk+1

a

)
= qk,l+1

w (12)

In the proposed algorithm, we check if the CFL condition
is satisfying, namely, CFL<1. The CFL may be defined as
follows,

CFLx =
ux∆tk,l

∆x
(13)

and

CFLy =
uy∆tk,l

∆y
(14)

for saturation equation. It is know that the CFL depends on
the ratio ∆t/∆x which can be fixed at larger time-steps and
larger mesh-size. Thus, when we use a lager domain (larger
mesh size) then we can use larger time step size. In the
implementation, the initial time-step for the saturation equation
is taken as the pressure time-step, i.e., ∆tk,0 = ∆tk, and the
initial time-step for the concentration equation is taken as the
saturation time-step, i.e., ∆tk,l,0 = ∆tk,l. Then, we check if
CFLx > 1 or CFLy > 1, the saturation time-step will be
divided by 2 and the CFLx and CFLy will be recalculated.
This procedure will be repeated until satisfying the condition
CFLx < 1 and CFLy < 1, then the final adaptive saturation
time-step will be obtained.

4. Spatial Discretization
The cell-centered finite difference (CCFD) is a locally

conservative method that is very useful in solving petroleum
reservoir simulation problems. Arbogast et al. (1997) have
proved that the CCFD method is equivalent to the mixed finite
element method in the case of rectangular elements. In this
work, we apply the CCFD scheme to the system of equations
(9)–(12). The corresponding algebraic coupled pressure and
saturation equation are solved implicitly to obtain the pressure
is given as,

At

(
skw

)
Φk+1
w = Qt

(
skw

)
(15)

where

At(s
k
w) = Aa(skw)−∆tlAc

(
skw

)
Φ′(skw)M−1Aw(skw) (16)
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Fig. 1. Real heterogenous permeability map.

Fig. 2. Adaptive time-step size, ∆tl against the number of steps of the outer loop k and the number of the inner loops l at k=200.
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Fig. 3. Adaptive time-step sizes, ∆tl and ∆tm against the number of steps of the outer loop k and the number of the inner loops l and m: Case 2 (∆tk=100).

and,

Qt

(
skw

)
= Qk+1

ac −Ac

(
skw

) [
Φc

(
skw

)
+ Φ′

(
skw

) (
skw − sk+1

w

)]
−∆tlAc

(
skw

)
Φ′

(
skw

)
M−1Qk+1

w
(17)

After calculating the pressure and the velocity, the CCFD
scheme of (12) to update the saturation is the following
algebraic equation,

M
sk,l+1
w − skw

∆tl
+ As

(
uk+1
a

)
fw

(
skw

)
= Qk,l+1

s (18)

5. Numerical Tests
In order to examine the performance of the current scheme

we introduce some numerical examples in this section. Firstly,
we introduce the required physical parameters used in the
computations. Then, we study the performance of the scheme
by introducing some results for the adaptive time steps based
on values of the corresponding CFL. Then we present some

results for the distributions of water saturation. The values and
units of the physical parameters are inserted in Table 1.

In this study, we use a real permeability map of dimen-
sions 120 × 50, which is vary in a large scope and highly
heterogenous (Al-Dhafeeri and Nasr-El-Din, 2007) (see the
permeability map, Fig. 1). We consider a domain of size
40m×16m×1m which is discretized into 120 × 50 uniform
rectangles grids. The injection rate was 0.01 Pore-Volume-
Injection (PVI) and continued the calculation until 0.5 PV. In
this example, we choose the number of steps of the outer loop
to be k=200 (see Fig. 2). In this figure, the adaptive time-
step size, ∆tl is plotted against the number of steps of the
outer loop k and the number of the inner loops l. It can be
seen from this figure that ∆tl starts with large values then
they gradually become smaller and smaller as k increases.
On the other hand, one may note that ∆tl starts with large
values then they gradually becomes smaller and smaller as l
increases. Moreover, Fig. 3 illustrates adaptive time-step size,
∆tl against the number of steps of the outer loop k and the
number of the inner loops l at k=100. Finally, Fig. 4 adaptive
time-step sizes, ∆tl and ∆tm against the number of steps of
the outer loop k and the number of the inner loops l and m
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Fig. 4. Adaptive time-step sizes, ∆tl and ∆tm against the number of steps of the outer loop k and the number of the inner loops l and m: Case 1 (∆tk=50).

Fig. 5. Distribution of water saturation at 0.15 PV.
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Fig. 6. Distribution of water saturation at 0.3 PV.

Fig. 7. Distribution of water saturation at 0.5 PV.

(∆tk=50).
Variations of saturation at 0.3 PV, 0.4 PV and 0.5 PV

are plotted in Figs. 5, 6 and Fig. 7, respectively. It can
be seen from these figures that the distribution for water
saturation is discontinuous due to the high heterogeneity of
the permeability. One notices the higher water saturation at
higher permeability regions.

6. Conclusions
In this paper, we introduce an efficient time-stepping

scheme with adaptive time-step sizes based on the CFL
calculation. Hence, we have calculated the CFLx and CFLy
at each sub-step and checked if the CFL condition is satisfied
(i.e. CFL< 1). We applied this scheme with IMPES scheme
to simulate the problem of two–phase flow in porous media.
The capillary pressure is linearized and employed to couple
the pressure and the saturation equations. Then, the saturation
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equation is solved explicitly to update the saturation at each
step. The CCFD method was used to discretize the governing
equations spatially. In order to show the efficiency of the
proposed scheme, we presented some numerical experiments.
The outer pressure time-step size is selected then the saturation
subtime-step is calculated and adaptive by the CFL condition.
We presented different values of the outer pressure time-step,
and distributions of the water saturation is shown in a graph.
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unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.
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Klisiński, M. Inconsistency errors of constant velocity multi-
time step integration algorithms. Comput. Assist. Mech.
Eng. Sci. 2001, 8(1): 121-139.

Kou, J., Sun, S. A new treatment of capillarity to improve the
stability of impes two-phase flow formulation. Comput.
Fluids. 2010, 39(10): 1923-1931.

Kou, J., Sun, S., Yu, B. Multiscale time-splitting strategy for
multiscale multiphysics processes of two-phase flow in
fractured media. J. Appl. Math. 2011, 4: 1-21.

Lu, Q. A parallel multi-block/multi-physics approach for
multi-phase flow in porous media. Ph.D Thesis. The
University of Texas, Austin, 2000.

Park, Y.J., Sudicky, E.A., Panday, S., et al. Application of
implicit sub-time stepping to simulate flow and transport
in fractured porous media. Adv. Water Resour. 2008,
31(7): 995-1003.

Singh, V., Bhallamudi, S.M. Complete hydrodynamic border-
strip irrigation model. J. Irrig. Drain. Eng. 1996, 122(4):
189-197.

Singh, V., Bhallamudi, S.M. Hydrodynamic modeling of basin
irrigation. J. Irrig. Drain. Eng. 1997, 123(6): 407-414.

Smolinski, P., Belytschko, T., Neal, M. Multi-time-step
integration using nodal partitioning. Int. J. Numer. Meth.
Eng. 1988, 26(2): 349-359.

Smolinski, P., Sleith, S., Belytschko, T. Stability of an explicit
multi-time step integration algorithm for linear structural
dynamics equations. Comput. Mech. 1996, 18(3): 236-
243.

Sun, S., Geiser, J. Multi-scale discontinuous Galerkin and
operator-splitting methods for modeling subsurface flow
and transport. Int. J. Multiscale Com. 2008, 6(1): 87-101.

Telytschko, T., Lu, Y.Y. Convergence and stability analyses of
multi-time step algorithm for parabolic systems. Comput.
Method. Appl. M. 1993, 102(2): 179-198.

Vanderkwaak, J.E. Numerical simulation of flow and chemical
transport in integrated surface-subsurface hydrologic
systems. Ph.D. thesis. University of Waterloo, Canada,
1999.

Wang, Y., Sun, S., Yu, B. Acceleration of gas flow simulations
in dual-continuum porous media based on the mass-
conservation POD method. Energies 2017, 10(9): 1380.

Wang, Y., Yu, B., Cao, Z., et al. A comparative study of POD
interpolation and POD projection methods for fast and
accurate prediction of heat transfer problems. Int. J. Heat
Mass Tran. 2012, 55(17): 4827-4836.

Young, L.C., Stephenson, R. A generalized compositional
approach for reservoir simulation. SPE J. 1983, 23(23):
727-742.


