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Abstract:
Hydraulic fracturing generally leads to highly complex hydraulic networks for tight oil 
reservoirs. It is significant to understand the hydraulic fracture effect on well performance. 
As an effective tool, semi-analytical solution for well pressure transient analysis (PTA) and 
rate transient analysis (RTA) is used in large amount because of higher calculation efficiency 
than numerical solution. In this paper, the PTA and RTA methods and result of composite 
formation system (CFS) are shown comprehensively. Firstly, a mathematical model of 
multistage fractured horizontal well (MsFHW) in CFS was proposed for tight oil reservoir 
with different regions and formation properties. In the model, two regions with different 
formation parameters were distinguished. This assumption of two regions, i.e. CFS is a 
composite tight reservoir formed after hydraulic fracturing. Difference of finite hydraulic 
fracture conductivity, inclined angle of hydraulic fracture, different shapes of multi-wing 
fractures in perforating point are considered to make this model powerful to analyze 
production performance of different MsFHW types. The inner and outer regions were 
assumed as dual porosity medium but single porosity medium model can also be solved by 
simplification. Then, the solution of MsFHW performance analysis model is obtained by 
source function method and the source function superposition principle which are common 
used in PTA and RTA. PTA for well producing at a constant production rate and RTA for 
well producing at a constant wellbore pressure were obtained and discussed. Different flow 
regimes were divided for different fracture geometry situations. The effects of different 
MsFHW types on PTA and RTA were analyzed. The inflow performance for different 
hydraulic fractures were presented.

1. Introduction
The development of tight oil and gas has become a hot

issue all around the world (Howarth et al., 2011; Hughes,
2013; Vidic et al., 2013). As an effective tool, MsFHW
receives an increasing attention owing to its advantages of
reduced flow resistance, increased drainage area, and improved
production. This new technique made it possible to develop the
tight gas and oil reservoirs economically and leads to the shale
gas and tight oil revolution (Patzek et al., 2013; Wang et al.,
2014; Mănescu and Nuño, 2015).

Lab experiments, microseismic observations and geome-
chanics theoretical analysis show that hydraulic fractures can
be complex geometry (Weng et al., 2014; Wu, 2014; Guo
et al., 2015). Commonly, the hydraulic fracture will be a
symmetrical bi-wing shape. But under certain conditions,

complex hydraulic networks may exist and highly affects
MsFHW production performance. When developing tight oil
reservoirs, a large fracture network is beneficial to maximize
well performance which is defined as stimulated reservoir vol-
ume (SRV) (Mayerhofer et al., 2010; Wang et al., 2015). The
SRV can create high conductivity flow channels which benefit
the oil or gas production (Stalgorova et al., 2012a, 2012b;
Clarkson and Christopher, 2013). SRV makes it possible to
develop tight oil or shale gas commercially (Mayerhofer et
al., 2006; Duliman, 2013). Horizontal in situ stress difference,
rock brittleness and natural fracture system are key factors
to affect the morphology of SRV (Britt and Schoeffler, 2009;
King, 2010). The effective fracture network mechanisms have
been widely investigated both experimentally and numerically
which provide effective guide for unconventional field devel-
opment (Akulich and Zvyagin, 2008; Rahman et al., 2009;
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Chuprakov et al., 2011; Fan and Zhang, 2014).
Many scholars have done research on the production per-

formance of MsFHW. Analytical and semi-analytical methods
had been used. Pressure transient behavior of horizontal wells
coupled with multiple hydraulic fractures were analyzed in
single or dual porosity media and bi-wing shaped fractures,
multi-wing shaped fractures and secondary-fracture were also
considered (Chen et al., 2004; Zerzar et al., 2004; Luo
and Tang. 2015). To consider the SRV, the tri-linear flow
model was proposed to study the MsFHW performance in
unconventional reservoirs and the transient pressure curves
were given and used to analyze field data (Ozkan et al.,
2009; Ozkan et al., 2011). Brown et al. (2011) presented
an analytical tri-linear flow model to simulate the pressure
transient and production behavior of fractured horizontal wells
in unconventional reservoirs. The study provide an insight
about possible flow regimes and the conditions leading to these
flow regimes. Using a tri-linear flow model, Apaydin et al.
(2012) presented an analytical model with composite matrix
blocks to describe the effect of matrix micro-fractures on the
effective matrix permeability. Stalgorova and Mattar (2013)
improved the tri-linear flow model where SRV is simplified
into a stimulated region with limited width. Five regions were
defined to simulate the stimulated reservoir volumes. Flow in
these regions was all linear. Sang et al. (2014) improved the
tri-linear model by considering desorption and adsorption for
shale gas reservoirs. Tian et al. (2014) established a new model
considering adsorption, desorption, and dual diffusion. All tri-
linear models are based on the assumption that fluid flow obeys
the linear flow in discovered regions. This assumption may
ignore some flow regimes compared with the actual production
process in MsFHW reservoirs. There are other approaches
to characterize the SRV. The key motivation is to overcome
the constrains because of the linear region assumption. Xu
et al. (2015) used the equivalent elliptical flow model to
describe the SRV in which the reservoir was approximately
a composite formation considering dual-porosity. The model
divided the reservoir into inner and outer regions, and the inner
region can be used to characterize the SRV, and the outer
region is the non-stimulated reservoir volume. The mathieu
modified functions were used to solve the elliptical flow
problem successfully. Zhao et al. (2014) proposed a similar
model using a circular region to characterize the SRV in tight
gas reservoirs.

Numerical simulation has been a powerful and effective
tool for studying SRV and fracture networks. Mayerhofer
et al. (2006) performed numerical reservoir simulations to
understand the impact of fracture-network properties including
fracture size and density, fracture conductivity, matrix perme-
ability and gaps in the network on well performance. Cipolla et
al. (2010, 2011) presented a workflow for using micro seismic
data to characterize discrete fractures. Meryer et al. (2011)
presented a method to predict MsFHW performance with
SRV using the discrete fracture network numerical simulation.
Wang et al. (2015) studied flow regimes using the numerical
simulation. Yu et al. (2015) studied the well spacing optimiza-
tion and reservoir performance using numerical simulation
in Bakken tight oil reservoirs. Weng et al. (2014) presented

and validated a comprehensive and efficient complex fracture
network model that simulates hydraulic fracture networks
created during the stimulation treatment and proppant place-
ment. Numerical reservoir simulation is an effective tool to
obtain well performance, but usually with certain sacrifices
on simulation accuracy and efficiency.

All above works are valuable to understand the MsFHW
performance. To our best knowledge, there are few models
which can successfully analyze the MsFHW performance
including pressure transient analysis (PTA) and rate transient
analysis (RTA) in a composite system of tight oil reservoirs.
The models proposed previously can study the production
performance of tight oil and gas in some extent (Jiang et al.,
2014; Zhao et al., 2014) but have some limits: a) the hydraulic
fracture conductivity is assumed to be infinite which can
cause error in production performance. In fact, the hydraulic
fracture has the finite conductivity; b) these models can’t
be used in the PTA and RTA when considering differences
of geometry between different hydraulic fractures. In this
paper, the MsFHW model in CFS is considered to be as
dual-porosity media. In the matrix, the unsteady flow was
considered which is very important for tight oil/gas reservoirs
because it is not suitable to consider the pseudo-steady flow
between the fracture and matrix (Ozkan et al., 2009). Also,
the conductivity of hydraulic fracture is thoroughly considered.
Different fracture geometries effects such as inclined fractures,
geometry difference between different fractures are shown in
detail.

The rest of this paper is organized as following. Section 2
describes the proposed model in detail; Section 3 presents the
semi-analytical solution for the model. Detailed derivation is
presented in Appendix B and Appendix C; Section 4 consists
of results and discussion, where the type curves from the
solutions and the impact of parameters are presented.

2. Model construction
In this section, we discuss the physical and mathematical

models for understanding MsFHW performance in CFS.

2.1 Physical model

Due to the complexity of hydraulic networks, the SRV can
be different shapes. Here, the circle shaped SRV (Jiang et al.,
2014; Zhao et al., 2014) is focused. The schematic diagram
for MsFHW in CFS is shown in Fig. 1. In the model, the
reservoir is divided into inner and outer regions and the two
regions have different reservoir properties. The inner region is
a dual porosity media including matrix, natural fractures and
induced fractures. The outer region is a dual porosity media
which is not influenced by hydraulic fractures, but has natural
fractures. Referring to our the model assumes: (1) tight oil
pressure propagates slowly in the reservoir and is difficult to
reach the boundary, so the outer region of a circular reservoir
can be considered as infinite and the inner region radius is r1;
(2) the reservoir is horizontal with uniform thickness of h and
original pressure pi; (3) for the inner region, the horizontal
permeability is noted as kf1, the compressibility Ctf1, the
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Fig. 1. Multi-stage horizontal well with circle shaped SRV.

porosity ϕf1 for the fracture system; for the matrix, the
permeability km1, the compressibility Ctm1, and the porosity
ϕm1; while for the outer region, the same parameters as in
the inner region are noted as kf2, Ctf2, ϕf2, km2, Ctm2, ϕm2

respectively; (4) MsFHW are completely included in the inner
region (Fig. 1), and wells produce at a constant rate qsc.

2.2 Mathematical model

2.2.1 Flow model in the inner region

For the matrix system, unsteady flow is considered. The
flow equation in the inner region can be expressed as follows
in the spherical coordinates system:

1

r2m1

∂

∂rm1

(
r2m1

∂pm1

∂rm1

)
=
φm1µCtm1

km1

∂pm1

∂t

(0 ≤ rm1 ≤ R1)

(1)

Initial condition:

pm1 (rm1, 0) = pi (2)

Inner boundary condition:

∂pm1

∂rm1

∣∣∣
rm1=0

= 0 (3)

Outer boundary condition:

pm1

∣∣∣
rm1=R1

= pf1 (4)

For the fracture system, the flow equation in the inner
region is as follows with cylindrical coordinates system:

1

r

∂

∂r

(
kf1
µ
r
∂pf1
∂r

)
+ qm1 = φf1Ctf1

∂pf1
∂t

(0 ≤ r ≤ r1)

(5)

The outflow mass from unit volume of matrix per unit time
is qm1, according to the derivation of Jia et al. (2013). The
inter-porosity gas mass flux from matrix system to fracture
system per unit time from unit volume of matrix is:

qm1 = − 3

R1

km1

µ

∂pm1

∂rm1

∣∣∣
rm1=R1

(6)

With Eq. 1 - Eq. 6, the flow equation expressed in Laplace
transform variables for the inner region can be expressed as
Eq. 7. The derivation is presented in Appendix B.

1

rD

∂

∂r

(
rD
∂pf1D
∂rD

)
= f1pf1D

(0 ≤ rD ≤ r1D)

(7)

Where:

f1 = ω1u+ 3λ1

(√
1− ω1

λ1
u coth

(√
1− ω1

λ1
u

)
− 1

)
(8)

2.2.2 Flow model in the outer region

For the matrix system:

1

r2m2

∂

∂rm2

(
r2m2

∂pm2

∂rm2

)
=
φm2µCtm2

km2

∂pm2
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(9)

Initial condition:

pm2 (rm2, 0) = pi (10)

Inner boundary condition:

∂pm2

∂rm2

∣∣∣
rm2=0

= 0 (11)
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Outer boundary condition:

pm2

∣∣∣
rm2=R2

= pf2 (12)

For the fracture system, the flow equation in the outer
region is specified in the cylindrical coordinates system:

1

r

∂

∂r

(
kf2
µ
r
∂pf1
∂r

)
− 3

R2

km2

µ
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∂rm2

∣∣∣
rm2=R2
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∂pf2
∂t

(r1 ≤ r ≤ ∞)

(13)

With Eq. 9 - Eq. 13, the flow equation expressed in Laplace
transform variables for the inner region can be expressed as
Eq. 14. The derivation is presented in Appendix B.

1

rD

∂

∂r

(
rD
∂pf2D
∂rD

)
= f2pf2D

(r1D ≤ rD ≤ ∞)

(14)

Where:
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1− ω2

λ2
uη coth

(√
1− ω2

λ2
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)
− 1

)
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(15)

2.2.3 Boundary condition and initial condition

For the line source inner region, the following equation can
be derived for the inner region:

lim
r→0

2πkf1hr

µ

∂p1
∂r

= −q̃ (16)

Assuming the upper and lower boundaries of formation
are closed for the formation and the boundary of formation
in horizontal direction is infinite, we can obtain the following
equations:

∂pf1
∂z1

=
∂pf2
∂z2

= 0, z = 0 or h (17)

pf2 = 0, r =∞ (18)

For the inner region and outer region, when r = r1, the
pressure and flux will be continuous. So the interface condition
will be:

pf1 = pf2, r = r1 (19)

∂pfD1

∂rD
=

1

M

∂pfD2

∂rD
, rD = r1D (20)

Applying the dimensionless variables and Laplace trans-
formations to above Eq. 16 - Eq. 20, the following equations
can be derived:

lim
rD→0

rD
∂pf1D
∂rD

= − q̃

qsc
line source in inner region (21)

∂pf1D
∂z1D

=
∂pf2D
∂z2D

= 0, zD = 0 or hD (22)

pf2D = 0, rD =∞ (23)

pf1D = pf2D, rD = r1D (24)

∂pf1D
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=
1

M

∂pf2D
∂rD

= 0, rD = r1D (25)

M is the mobility ratio of the inner region and the outer
region. Note the conventional mobility ratio is defined between
two different fluids; but it is used to characterize the mobility
ability difference of the inner region and the outer region. Eq.
7, Eq. 14 and Eq. 21 - Eq. 25 form the basic model for the
composite reservoir with a point source. In next section, the
solution of this model is derived.

3. Analytical solution

3.1 Solution methods

There are two methods to obtain pressure solutions for the
model proposed in section 2.2. One is using point function
method by Jiang et al. (2014) where the line source can
be obtained by point function solution integral. The other
one is to obtain line source solution directly by Zhao et al.
(2014) according to characteristics of Dirac delta function
and Bessel’s function. Both methods can solve this model
effectively but the method by Zhao et al. (2014) is relatively
easy to derive. The pressure distribution for a line source is
according to the work by Zhao et al. (2014):
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Fig. 2. A schematic illustration of multistage fractured horizontal well and fracture discrete units.

Where q̃L is the line source, m3/s; RD is the distance
between the line source and pressure observation point; PN1

is line source solution when pressure observation point is in
the inner region; PN2 is line source solution when pressure
observation point is in the outer region.

3.2 Pressure behaviors for MsFHW in tight oil reser-
voirs considering SRV

The proposed model is simplified to obtain the pressures
and rate behaviors for MsFHW. The following assumptions
are made.

1) the wellbore to be intersected by N single-wing frac-
tures, and all the fractures are transverse to the well and fully-
penetrating to the formation shown in Fig. 2;

2) the flow from the reservoir to the wellbore is negligible
comparing to the flow from the hydraulic fracture planes;

3) the well is assumed to produce at a constant rate or
constant wellbore pressure.

To consider the finite conductivity fracture in transient
pressure or rate analysis, the method proposed by Zerzar and
Bettam (2004) and Luo et al. (2015) was used. The detailed
derivation is presented in Appendix C. Eq. C-16 couples the
wellbore pressure and the inflow flux for each fracture discrete
units. Then, the superposition principle by Zhao et al. (2014)
can be used to obtain the wellbore pressure and inflow flux
for each fracture discrete units. Each single wing fracture has
been discretized into n units, as shown in Fig. 2. There is
n∗N+1 equations which can solve n∗N+1 unknowns of pwD,

qD1, qD2, . . . , qDn∗N . Therefore, the bottomhole pressure
distribution as well as flux distribution for each fracture can be
obtained. The Gauss elimination method was first used to solve
equations, then the Stehfest numerical inversion algorithm
(Stehfest, 1970) was chosen to calculate the dimensionless
bottomhole pressure as well as the dimensionless production
rate distribution in real time space. The dimensionless well
production rate at a constant bottomhole pressure can be
defined as follows (Van et al., 1949):

qD =
1

u2pwD
(28)

4. Results and discussion
In this section, the dimensionless pressure/rate and deriva-

tive response for a multistage fractured horizontal well in tight
oil reservoirs are obtained with the model proposed above. The
effects of different types of fractured wells on the behavior are
studied.

4.1 Verification

In this model, if some parameters are set to satisfy some
conditions, this new model proposed in this paper can be
converted into some other models. If we set η = 1, ω1 = 1, and
ω2 = 1, i.e., f1 = f2 = u, this new model can be simplified
as single-porosity model in a homogenous reservoir, which
is similar to the model proposed by Luo et al. (2014) and
Zerzar et al. (2004). As shown in Fig. 3, very good match
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Fig. 3. Comparison of pressure and pressure derivative for multistage fractured horizontal well by 6 single-wing shaped hydraulic fractures.
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(a) Pressure and rate transient curves: the green lines shows the bottomhole pressure curve (the above one) and pressure derivative curve (the below dotted
one); the red lines shows the well rate curve (the above one) and rate derivative curve (the below dotted one)

(1) Bilinear flow at tD=8.11×10−4 (2) Linear flow at tD=8.11×10−2
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(3) First radial flow at tD=2.31 (4) Second linear flow at tD=43.3

(5) First radial flow at tD =534 (6) transition flow at tD =23100

(7) transition flow at tD =433000
(b) Dimensionless pressure at different time of each flow regime

Fig. 4. Flow regimes: multistage fractured well of single porosity media.
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is obtained in the pressure and pressure derivative profiled
compared results from our model and those from existing
models. The comparison validated the proposed model.

4.2 Type curves of different multistage fractured
wells

In this section, the dimensionless pressure/rate and deriva-
tive response for a multistage fractured horizontal well in tight
oil reservoirs are obtained with the model proposed above.

Fig. 4 shows the type curves of MsFHW in single porosity
media composite system by setting ω1 = 1, and ω2 = 1,
i.e., f1 = u and f2 = ηu. The flow regimes are as follows:
(1) the early bilinear flow period characterized by a slope of
1/4 in the pressure derivative curve; (2) the early linear flow
characterized by a slope of 1/2 in the pressure derivative curve.
During the first linear flow, each fracture produces indepen-
dently with the oil flowing perpendicular to the fracture; (3)
the early radial period around individual fractures marked by
a constant pressure derivative which is 1/(4*N) on the type
curve. This regime can occur if the fracture spacing is large
enough compared to the fracture half-length; (4) the second
linear flow period by a slope of 1/2 in the pressure derivative
curve; (5) the second radial flow by a horizontal straight line in
the derivative curve which is 1/2; (6) the transition flow period
between second radial flow and the third radial flow; (7) the
third radial flow characterized by a 1/2*M horizontal straight
line in the derivative curve. Compared with the type curves for
horizontal wells in the homogenous single porosity reservoir
(shown in Fig. 3, there are three more flow regimes for the
MsFHW in composite system, as shown as regimes (6) and
(7) in Fig. 4a. Fig. 4b shows the 3D maps for the seven flow
regimes discussed above. As can be seen, as time increases,
pressure will spread from near the hydraulic fracture to away
from it. In regime four, hydraulic fractures begin to interfere
with each other. In regime six, pressure spreads to the outer
region and the pressure and rate transient curves reflects the
outer region formation parameters.

Fig. 5 shows the typical curve of multistage fractured
well of dual porosity media. Fig. 5a shows two kinds of
fractured well types. The first is that the hydraulic fractures
are symmetrical along the wellbore which is the most popular
fracture distribution type in hydraulic fracturing. The second is
single wing along the wellbore. Fig. 5b shows the dimension-
less pressure distribution of different flow regimes. Compared
with the typical curve of MsFHW in single media composite
system, for dual porosity media, regime five is much different
from the single porosity media model. The “downward tip”
in pressure derivative curve appears which reflects the inter-
porosity flow between the matrix and natural fracture. Also,
the second radial flow is recovered by the “downward tip”. For
symmetrical and single wing fractures models, the pressure
spreads symmetrically for symmetrical fractures model at the
early time while for single wing fractures model the pressure
spreads fast on the side the factures distributes. Also, at the
early time, the single wing fracture model consumes more
energy which makes the pressure drop bigger. The reason is
that the drainage area for single wing fracture is much less
than the symmetrical one.

Though our purpose in this paper is to use the methods of
the PTA and RTA for MsFHW, the model can also analyze
the PTA and RTA for vertical fractured well in CFS. Fig.
6 shows the typical curve of vertical inclined fractured well
with multiple-wings. The inclined angles are 0◦, 60◦, 120◦,
180◦, 240◦, and 300◦ respectively. As can be seen from Fig.
6, five flow regimes can be divided: the early bilinear flow; the
transition flow period between early bilinear flow and the first
radial flow; inter-porosity flow between the matrix and natural
fracture; the transition flow period between inter-porosity flow
between the matrix and natural fracture and the third radial
flow; the second radial flow. Compared to Fig. 4, the first radial
flow regime and second regime both disappear for vertical
inclined fractured well. The linear flow is not obvious for
this model because the early time pressure interferes between
different single wings.

Fig. 7 shows the typical curve of multi-stage and multi-
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(2) Dimensionless pressure at different time of each flow regime(single wing fractures)
(b) Dimensionless pressure distribution of different flow regimes at different dimensionless times: tD =0.000534, 0.00658, 0.187, 3.51, 534, 53400, 658000

respectively

Fig. 5. Flow regimes: multistage fractured well of dual porosity media with symmetry fractures and multistage fractured well of dual porosity media with
single wing fractures.
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Fig. 6. Flow regimes: multistage fractured vertical well of dual porosity media.
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(1) multi-stage multi-cluster fractured well of dual porosity media
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(2) multistage multi-cluster fractured well of dual porosity media with inclined fractures
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(3) multistage multi-cluster fractured well of dual porosity media with different length fractures
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(4) multistage multi-cluster fractured well of dual porosity media with multiple wings fractures
(b) Dimensionless pressure distribute of different flow regimes: tD =0.000811, 0.035, 0.43, 3.5, 811, 81113, 657933

Fig. 7. Flow regimes: multi-stage multi-cluster fractured well of dual porosity media; multi-stage multi-cluster fractured well of dual porosity media with
inclined fractures; multistage multi-cluster fractured well of dual porosity media with different length fractures; multistage multi-cluster fractured well of dual
porosity media with multiple wings fractures.
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Fig. 8. Inflow performance of different stage fracture conductivity.

cluster fractured horizontal well, multi-stage and multi-cluster
inclined fractured well (the inclined angle is 60◦), multi-stage
and multi-cluster inclined fractured well with different length
fractures, and multi-stage and multi-cluster well with multi-
wing fractures (inclined angle is 0◦, 60◦, 120◦, 180◦, 240◦,
and 300◦). When developing tight oil/gas, multi-stage and
multi-cluster fractured well always be used. For a multi-stage
and multi-cluster fractured well, each stage contains a certain
number of fractures which called “cluster” (Jia et al., 2013).
In Fig. 7, there are three stages and for each stages there are
six single wing fractures. The dimensionless distance between
stages is DLD = 10 and the dimensionless distance between
cluster fractures is DCLD = 1. Also seven flow regimes
exist: the early bilinear flow period; the transition flow period
between early bilinear flow and the first radial flow; the first
radial flow; the linear flow period; inter-porosity flow between
the matrix and natural fracture; the transition flow period
between inter-porosity flow between the matrix and natural
fracture and the third radial flow; the second radial flow. As
can be seen, for these four model, the differences between each
other focus on the first, second and third flow regimes. At the
early time, pressure spreads near the wellbore and different
hydraulic facture geometries have important effect on early

flow regimes.

4.3 Fracture inflow performance

It is important to understand contribution of each fractures
to the total wellbore. In section 4.2, PTA and RTA of different
well types are presented. In this part, we will show how to
use the proposed model to analyze the inflow performance
of different fractures. After inflow flux distribution of each
fracture were got by using the method proposed in section
3.2, it is easy to obtain the fracture inflow performance of
multistage fractured horizontal well in composite system by
sum the flux of each discrete unit related to the facture, i.e.,∑n
i=1 qDn. We take the multi-stage multi-cluster fractured

well shown in Fig. 7a(1) as example. Also, as comparisons,
different fracture conductivity are set for different stages:

Case 1: RFD(stage 1) = RFD(stage 2) = RFD(stage 3) =
5;

Case 2: RFD(stage 1) = RFD(stage 3) = 5; RFD(stage 2)
= 15;

Case 3: RFD(stage 1) = RFD(stage 3) = 15; RFD(stage 2)
= 5.
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Fig. 8 shows the inflow rate of different cases. As the
geometry model is symmetry, only five fractures are studied.
As can be been from Fig. 8b, Fig. 8c and Fig. 8d, these
three cases are different for the inflow rates of different stage
fracture stages. For case 1, at the early time, each fracture has
the same inflow rate because the conductivities are same for
different factures. Then, 1, 3, and 4 have a big rate and keep
same. 2 and 5 keep a small rate. During this period, 1, 3 and
4 have the same drainage area and bigger than 2 and 5 which
have smaller drainage area. At the later time, fracture 1 has
the biggest inflow rate because the drainage area is the biggest
for among these fractures. On the contrary, fracture 5 has the
smallest inflow rate because it has the smallest drainage area
at the center position. For case 2, at the beginning, fracture 4
and 5 have the biggest inflow rate because the high fracture
conductivity. Also, for case 3, in early time, fracture 1, 2,
and 3 have the biggest inflow rate because the high fracture
conductivity. As time goes on, the inflow characteristics are
like the case 1 and the hydraulic fracture has weak effect on
inflow performance and the drainage area becomes the key
factor.

5. Conclusions
In this paper, a new model is proposed for a multistage

fractured horizontal well in composite tight oil reservoirs. The
pressure transient and rate transient responses are discussed.
The following conclusions can be drawn from this study:

(1) Oil flow in tight reservoirs is complicated because of
complex fracture and matrix systems for MsFHW. In the paper,
the mathematical model is verified to describe the flow both
in MsFHW and matrix. Specifically, the composite system is
taken into consideration compared to the existing PTA and
RTA method in tight oil reservoirs. Seven flow regimes are
identified from the transient pressure curve for single porosity
media and dual porosity media formations for symmetrical
bi-wing fracture MsFHW. The pressure transient and rate
transient curves are different for these two kinds of well
models.

(2) The fracture geometry has a significant effect on
pressure and rate transient curves. Flow regimes for multi-
stage muti-cluster fractured well of dual porosity media, multi-
stage muti-cluster fractured well of dual porosity media with
inclined fractures, multi-stage muti-cluster fractured well of
dual porosity media with different length fractures, and multi-
stage muti-cluster fractured well of dual porosity media with
multiple wings fractures are different in the early time and
in the late time they keep constant in the pressure and rate
transient curves.

(3) The workflow proposed in this paper can be used to
analyze the inflow performance for MsFHW. The rate of each
fracture can be calculated exactly at the production life of
a certain well type. If the properties are same for different
fractures. The early inflow performances are same because
there is no interference between fractures. When production
time increases, the inflow performance of different fractures
becomes much different because the fracture position decides
the different oil drainage area at late time. When the properties

of fractures are different, the inflow performance are different
at the early time because the near wellbore resistance are
improved in different extent. But by comparing the four
models in Fig. 7a(5), if the formation parameters are same, the
later inflow performance are the same for different fractures
under different properties.

Nomenclature
M = Mobility ratio, fraction
k = Permeability, m2

µ = Fluid viscosity, Pa·s
η = Diffusivity ratio, fraction
u = Laplace space variable with respect to tD
h = Reservoir thickness, m
L = Reference length, m
Ik(x) = The modified Bessel function of first kind
Kk(x) = The modified Bessel function of second kind
qsc = Production rate, m3/s
Lf = Fracture half length, m
t = Time, s
N = Facture number
DL = Stage spacing, m
DCL = Cluster fractures, m
r, θ, z = Directional coordinates
ϕ = Porosity, fraction
ct = Total compressibility, Pa−1

p = Pressure, Pa
ω = Storability coefficient
λ = Inter-porosity coefficient
q = Point source, m3/s
Fx = Distance of discrete units in X direction
Fy = Distance of discrete units in Y direction
W = Hydraulic fracture width

Subscripts and superscripts

D = Dimensionless
i = Initial
m = Matrix
f = Fracture
− = Laplace domain
1 = Inner region
2 = Outer region
F = Hydraulic fracture

Acknowledgments
This study was funded by National Science and Technol-

ogy Major Project (No.2017ZX05013-002).

Open Access This article is distributed under the terms and conditions of
the Creative Commons Attribution (CC BY-NC-ND) license, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

References



Yuan, J., et al. Advances in Geo-Energy Research 2018, 2(3): 319-342 337

Akulich, A.V., Zvyagin, A.V. Interaction between hydraulic
and natural fractures. Fluid Dynam+. 2008, 43(3): 428-
435.

Apaydin, O.G., Ozkan, E., Raghavan, R. Effect of discontin-
uous microfractures on ultratight matrix permeability of
a dual-porosity medium. SPE Reserv. Eval. Eng. 2012,
15(4): 473-485.

Biryukov, D., Kuchuk, F.J. Pressure transient behavior of
horizontal wells intersecting multiple hydraulic fractures
in naturally fractured reservoirs. Transport Porous Med.
2015, 110(3): 369-408.

Britt, L.K., Schoeffler, J. The geomechanics of a shale play:
what makes a shale prospective. Paper SPE125525 Pre-
sented at the SPE Eastern Regional Meeting, Charleston,
West Virginia, USA, 23-25 September, 2009.

Brown, M., Ozkan, E., Raghavan, R., et al. Practical solutions
for pressure-transient responses of fractured horizontal
wells in unconventional shale reservoirs. SPE Reserv.
Eval. Eng. 2011, 14(6): 663-676.

Chen, Z., Liao, X., Zhao, X., et al. A semianalytical approach
for obtaining type curves of multiple-fractured horizontal
wells with secondary-fracture networks. SPE J. 2016,
21(2): 538-549.

Chuprakov, D.A., Akulich, A.V., Siebrits, E., et al. Hydraulic-
fracture propagation in a naturally fractured reservoir.
SPE Prod. Oper. 2011, 26(1): 88-97.

Cipolla, C.L., Fitzpatrick, T., Williams, M.J., et al. Seismic-
to-simulation for unconventional reservoir development.
Paper SPE146876 Presented at the SPE Reservoir Char-
acterisation and Simulation Conference and Exhibition,
Abu Dhabi, UAE, 9-11 October, 2011.

Cipolla, C.L., Lolon, E.P., Erdle, J.C., et al. Reservoir
modeling in shale-gas reservoirs. SPE Reserv. Eval. Eng.
2010, 13(4): 638-653.

Clarkson, C.R. Production data analysis of unconventional gas
wells: Review of theory and best practices. Int. J. Coal.
Geol. 2013, 109: 101-146.

Fan, T., Zhang, G. Laboratory investigation of hydraulic frac-
ture networks in formations with continuous orthogonal
fractures. Energy 2014, 74: 164-173.

Guo, T., Zhang, S., Ge, H., et al. A new method for evaluation
of fracture network formation capacity of rock. Fuel
2015, 140: 778-787.

Howarth, R.W., Ingraffea, A., Engelder, T. Natural gas: Should
fracking stop? Nature 2011, 477(7364): 271.

Hughes, J.D. Energy: A reality check on the shale revolution.
Nature 2013, 494(7437): 307.

Jiang, R., Xu, J., Sun, Z., et al. Rate transient analysis for
multistage fractured horizontal well in tight oil reservoirs
considering stimulated reservoir volume. Math Probl.
Eng. 2014.

Jia, Y., Fan, X., Nie, R., et al. Flow modeling of well test
analysis for porousvuggy carbonate reservoirs. Transport
Porous Med. 2013, 97(2): 253-279.

King, G.E. Thirty years of gas shale fracturing: What have we
learned? Paper SPE133456 Presented at the SPE Annual
Technical Conference and Exhibition, Florence, Italy, 19-
22 September, 2010.

Luo, W., Tang, C. Pressure-transient analysis of multiwing
fractures connected to a vertical wellbore. SPE J. 2015,
20(2): 360-367.

Mayerhofer, M.J., Lolon, E.P., Warpinski, N.R., et al. What
is stimulated reservoir volume? SPE Prod. Oper. 2010,
25(01): 89-98.

Mayerhofer, M.J., Lolon, E.P., Youngblood, J.E., et al.
Integration of microseismic-fracture-mapping results with
numerical fracture network production modeling in the
Barnett Shale. Paper SPE102103 Presented at the SPE
annual technical conference and exhibition, San Antonio,
Texas, USA, 24-27 September, 2006.
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Appendix A
Dimensionless variables:

pD =
2πkf1h(pi − p1)

qscµ
, tD =

kf1t

(φ1Ct1)m+fµL2
, z1D =

z

L
,

rD =
r

L
, hD =

h

L
, M =

(
kf1
µ

)
/

(
kf2
µ

)
,

η =

(
kf1

(φ1µCt1)m+f

)
/

(
kf2

(φ2µCt2)m+f

)
, λ1 =

km1L
2

kf1R1
2 ,

λ2 =
km2L

2

kf2R2
2 , ω1 =

φf1Ctf1
φf1Ctf1 + φm1Ctm1

,

ω2 =
φf2Ctf2

φf2Ctf2 + φm2Ctm2
, rm1D =

r

R1
, rm2D =

r

R2

Appendix B

Inner region

Using the dimensionless variables (see Appendix A) for Eq. 1 - 4, the following equations can be derived:

1

r2m1D

∂

∂rm1D

(
r2m1D

∂pm1D

∂rm1D

)
=

(1− ω1)

λ1

∂pm1D

∂tD

(0 ≤ rm1D ≤ 1)

(B1)

pm1D (rm1D, 0) = 0 (B2)

∂pm1D

∂rm1D

∣∣∣∣
rm1D=0

= 0 (B3)

pm1D

∣∣∣
rm1D=1

= pf1D (B4)

Taking Laplace transformation to tD, Eq. B1 - Eq. B4 becomes:

1

r2m1D

∂

∂rm1D

(
r2m1D

∂pm1D

∂rm1D

)
=

(1− ω1)

λ1
upm1D

(0 ≤ rm1D ≤ 1)

(B5)

pm1D (rm1D, 0) = 0 (B6)

∂pm1D

∂rm1D

∣∣∣
rm1D=0

= 0 (B7)

pm1D

∣∣∣
rm1D=1

= pf1D (B8)

Solve the equations Eq. B5 - Eq. B8:

pm1D (rmD, u) =
pf1D

sinh

(√
(1−ω1)u

λ1

) sinh

(
rm1D

√
(1−ω1)u

λ1

)
rm1D

(B9)
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Using the dimensionless variables (see Appendix A), Eq. 5 can be derived:

1

rD

∂

∂rD

(
rD
∂pf1D
∂rD

)
= ω1

∂pf1D
∂tD

+ 3λ1
∂pm1

∂rm1D

∣∣∣
rmD=1

(0 ≤ rD ≤ r1D)

(B10)

Taking Laplace transformation to tD, Eq. B10 becomes:

1

rD

∂

∂rD

(
rD
∂pf1D
∂rD

)
= ω1upf1D + 3λ1

∂pm1

∂rm1D

∣∣∣
rmD=1

(0 ≤ rD ≤ r1D)

(B11)

With Eq. B9 and Eq. B11, the flow equation in inner region can be derived:

1

rD

∂

∂r

(
rD
∂pf1D
∂rD

)
= f1pf1D

(0 ≤ rD ≤ r1D)

f1 = ω1u+ 3λ1

√ (1− ω1)

λ1
u coth

√ (1− ω1)

λ1
u

− 1

 (B12)

Outer region

Using the dimensionless variables (see Appendix A) for the above equations, the following equations can be derived:

1

r2m2D

∂

∂rm2D

(
r2m2D

∂pm2D

∂rm2D

)
=

(1− ω2)

λ2
η
∂pm2D

∂tD

(0 ≤ rm2D ≤1)

(B13)

pm2D (rm2D, 0) = 0 (B14)

∂pm2D

∂rm2D

∣∣∣
rm2D=0

= 0 (B15)

pm2D

∣∣∣
rm2D=1

= pf2D (B16)

Taking Laplace transformation to tD, Eq. B13 - Eq. B16 becomes:

1

r2m2D

∂

∂rm2D

(
r2m2D

∂pm2D

∂rm2D

)
=

(1− ω2)

λ2
upm2D

(0 ≤ rm2D ≤ 1)

(B17)

pm2D (rm2D, 0) = 0 (B18)

∂pm2D

∂rm2D

∣∣∣
rm2D=0

= 0 (B19)

pm2D

∣∣∣
rm2D=1

= pf2D (B20)

Solve the equations Eq. B17 - Eq. B20:

pm2D (rm2D, u) =
pf2D

sinh

(√
(1−ω2)
λ2

uη

) sinh

(
rm2D

√
(1−ω2)
λ2

uη

)
rm2D

(B21)
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Using the dimensionless variables, the following equation can be derived:

1

rD

∂

∂r

(
rD
∂pf2D
∂rD

)
= ω2η

∂pf2D
∂tD

+ 3λ2
∂pm2

∂rmD

∣∣∣
rmD=1

(r1D ≤ rD ≤ ∞1)

(B22)

Taking Laplace transformation to tD, Eq. B17 - Eq. B20 becomes:

1

rD

∂

∂r

(
rD
∂pf2D
∂rD

)
= ω2ηupf2D + 3λ2

∂pm2

∂rm2D

∣∣∣
rm2D=1

(r1D ≤ rD ≤ ∞)

(B23)

With Eq. B21 and Eq. B23, the flow equation in inner region can be derived:

1

rD

∂

∂r

(
rD
∂pf2D
∂rD

)
= f2pf2D

(r1D ≤ rD ≤∞)

f2 = ω2uη + 3λ2

√ (1− ω2)

λ2
uη coth

√ (1− ω2)

λ2
uη

− 1


(r1D ≤ rD ≤ ∞)

(B24)

Appendix C
To consider the finite conductivity fracture in transient pressure or rate analysis, the method proposed by Luo et al. (2014)

was used.
Flow in hydraulic fracture can be described as:

∂

∂Fx

(
kFl

∂pFl
∂Fx

)
+

∂

∂Fy

(
kFl

∂pFl
∂Fy

)
= 0

0 <Fx < Fxmax

(C1)

For the second term of Eq. C1, we can deal with it as follows:

∂

∂Fy

(
kFl

∂pFl
∂Fy

)
=

2

WFl

(
kFl

∂pFl
∂Fy

∣∣∣
Fy=Fyo+

WFl
2

− kFl
∂pFl
∂Fy

∣∣∣
Fy=Fyo

)
(C2)

Combining Eq. C1 and Eq. C2 yields:

∂

∂Fx

(
kFl

∂pFl
∂Fx

)
+

2

WFl

(
kFl

∂pFl
∂Fy

∣∣∣
Fy=Fyo+

WFl
2

− kFl
∂pFl
∂Fy

∣∣∣
Fy=Fyo

)
= 0 (C3)

There is no flux in y direction, so Eq. C3 becomes:

∂

∂Fx

(
kFl

∂pFl
∂Fx

)
+

2

WFl
kFl

∂pFl
∂Fy

∣∣∣
Fy=Fyo+

WFl
2

= 0 (C4)

At the interface of natural fracture and hydraulic fracture:

kFl
µ

∂pFl
∂Fy

∣∣∣
Fy=Fyo+

WFl
2

=
kf1
µ

∂pf1
∂Fy

∣∣∣
Fy=Fyo+

WFl
2

(C5)

Combining Eq. C4 and Eq. C5 yields:

∂

∂Fx

(
kFl

∂pFl
∂Fx

)
+

2

WFl
kf1

∂pFl
∂Fy

∣∣∣
Fy=Fyo+

WFl
2

= 0 (C6)

Assume the production of the fracture is qFl, we get:

kFl
µ

∂pFl
∂Fx

∣∣∣
Fx=0

· WFlh

2
=
qFl
2

(C7)
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Close boundary for fracture:

kFl
µ

∂pFl
∂Fx

∣∣∣
Fx=Fxmax

= 0 (C8)

The relationship between the natural fracture flux and hydraulic fracture line source is:

qL = 2h
kf1
µ

∂pf1
∂Fy

∣∣∣
Fy=Fyo+

WFl
2

(C9)

Using the dimensionless variables, and Laplace transformation, Eq. C6 - Eq. C9 becomes:

∂2pFlD
∂Fx2D

+
2

RFlD

∂pflD
∂FyD

∣∣∣
FyD=FyOD+

WFlD
2

= 0 (C10)

∂pFlD
∂FxD

∣∣∣
xD=0

= − 2π

RFlD
qFlD (C11)

∂pFD
∂FxD

∣∣∣
xD=LFlD

= 0 (C12)

qLD = − 1

π

∂pf1D
∂FyD

∣∣∣
FyD=FyOD+

WFlD
2

(C13)

Where:

RFlD =
kFlWFl

kmLref
,WFlD =

WFl

Lref
, qFlD =

qFl
Q
, qLD =

LrefqL
Q

(C14)

We can get:

pwD − pFlD =
2π

RFlD

[
xDqFlD −

∫ xD

0

∫ v

0

q̃LDdxDdv

]
(C15)

Discrete the Eq. C15:

pwD − pFljD (Fxj) =
2π

RFlD

[
FxjD

n∑
k=1

qLkD∆FxD −
j−1∑
i=1

qLjD (j − i) ∆Fx2D − qLiD
∆Fx2D

8

]
(C16)


