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Abstract:
To better evaluate the production performance of tight oil reservoirs, it is urgent to solve
the multistage fractured horizontal well production enigma. It is paramount to develop
new models to analyze the well performance for tight oil reservoirs. In this paper, a
new production prediction model of multistage fractured horizontal well in tight oil
reservoir was established. In this model, unsteady transfer flow between fracture and
matrix was considered. This model was solved by using Laplace transform method, line
source function and Stehfest method comprehensively. The production prediction type
curves including pressure transient analysis curves and rate transient analysis curves were
then obtained. According to these type curves, eight flow regimes were obtained as early
wellbore storage period, skin factor period, bi-linear flow regime, linear flow regime, first
radial flow regime, transition flow regime, transfer flow regime and later radial flow regime.
In the end, a field case history matching result was given and four key parameters’ effect
on tight formation well production was analyzed. This research is of both theoretical
significance and practical value for tight oil development.

1. Introduction
Unconventional resource development has became a hot

issue recently in the world and is gradually becoming a key
component in the world’s energy supply (Wang et al., 2017;
Zhang et al., 2018; Cai et al., 2019; Yu et al., 2019). Due to
extremely low permeability ranging from 10−2 to 10−6 mD
(Cipolla et al., 2009), horizontal well drilling and multistage
hydraulic fracturing have been proven to be an integral tool
for tight oil/gas production. The economic feasibility of tight
reservoirs has a strong relationship with the fracture system
permeability near the wellbore (Mayerhofer et al., 2010;
Brown et al., 2011; Xie et al., 2015).

When developing a tight oil/gas reservoir, well production
performance should be predicted and thus a reasonable plan
can be drawn up. Now, many research models to predict the
multistage fractured horizontal well (MsFHW) performance
were proposed which are worthy to be reviewed. Larsen
and Hegre (1994) showed the transient pressure solution for
multiple transverse fractured well. Some flow regimes were di-
vided without considering boundary effect. Zerzar and Bettam

(2003) also presented an analytical model for fractured hori-
zontal wells in anisotropic closed or semi-infinite, homogenous
or naturally fractured systems. Three assumptions including
uniform flux, infinite conductivity and finite conductivity
models were considered (Larsen and Hegre, 1994). Coupling
the numerical fracture with an analytical reservoir model, Al-
Kobaisi et al. (2004) presented a hybrid numerical/analytical
model for pressure transient response of a finite conductivity
fracture intercepted by a horizontal well. The work can be
applied to develop multiply fractured horizontal well models
by superposition. “Linear flow model” was proposed for
pressure transient analysis (PTA) (Ozkan et al., 2004; Brown
et al., 2011; Ozcan et al., 2014). This is a powerful model
which is fit for ultra-low permeability reservoir development.
After that, Stalgorova and Mattar (2012a, 2012b) extended
the “trilinear flow model” to “five region model” in which
the formation is partially improved by the fracturing between
two adjacent hydraulic fractures. Then the semi-analytical
methods were presented in which the complex shape fracture
was considered. In these models, the hydraulic fracture can be
non-planar with finite conductivity. Sensitive parameters were
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analyzed carefully such as fracture spacing, wellbore storage,
and fracture conductivity (Luo et al., 2014; Wang et al., 2014;
Luo and Tang, 2015).

Recently, some complex geometry shape models were also
established to satisfy the complex geometry after fracturing in
tight/oil reservoir. Jiang et al. (2014) and Zhao et al. (2015)
established the circle composite reservoir model. This model
assumes that there are two regions in reservoir. The inner
region and outer region have different parameters and coupled
using the interface conditions. The source function was used
to solve the models. PTA and rate transient analysis (RTA)
were analyzed in detail (Jiang et al., 2014; Zhao et al., 2014,
2015). Similarly, Ketineni and Ertekin (2012) established
the composite model for multi-stage hydraulically fractured
horizontal well in a naturally fractured reservoir considering
the stimulated reservoir volume (SRV). They take the SRV as
a “rubble zone” and they assumed a pseudo-steady model to
describe the transfer of the fluid from matrix to fracture. They
didn’t give the exact pressure transient analysis results.

In this paper, the multistage fractured horizontal well PTA
and RTA models were established. In matrix system, the
unsteady flow was considered and the sphere block matrix was
used. In section 2, the physical model and mathematical model
were established. In section 3, the solution was showed in
detail. In section 4, we verified the model using some previous
results. At the same time, different flow regimes were divided
according to pressure transient and rate transient curves. In
the last section, the sensitivity analyses for four different
parameters were given to make us a better understanding of
the performance of MsFHW.

2. Model construction
In this section, we discuss the physical and mathematical

models for understanding MsFHW performance.

2.1 Physical model

The schematic diagram for MsFHW is shown in Fig. 1.
The formation is a dual porosity media including matrix,
natural fractures shown in Fig. 2. The model assumes: (1)
the reservoir is horizontal with uniform thickness of h and
original pressure pi; (2) the horizontal permeability is k f h,
the vertical permeability is k f v, the compressibility is Ct f ,
the porosity is φ f for the fracture system; for the matrix, the
permeability is km, the compressibility is Ctm, the porosity
is φm; (3) the influence of gravity and capillary forces on
fluid flow in both regions is ignored; (4) the wellbore storage
effect and formation damage are taken into account. The well
produces at a constant rate is qsc; and (5) spherical matrix
blocks are considered with the uniform radius R.

2.2 Mathematical model

For the matrix system, unsteady flow is considered. The
flow equation can be expressed as follows:

Pay zone

Multistage fractured horizontal well Hydraulic fracture

Fig. 1. Multistage fractured horizontal well.
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Fig. 2. Schematic of fracture and matrix system (after Yuan et al., 2018).
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With Eqs. (1)-(5), the flow equation can be expressed as
follows (Details are presented in Appendix A and Appendix
B):
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Inner boundary conditions:

lim
εD→0

rD
∂ p̄ f D01

∂ rD

∣∣∣∣
rD=p f D

=−
¯̃qL

qsc
(7)

Upper and lower boundary condition:

∂ p̄ f D

∂ zD
= 0, zD = 0 or hD (8)

Outer boundary condition:

p̄ f D = 0, rD = ∞ (9)

Initial condition:

p̄ f D = 0, tD = 0 (10)

3. Analytical solution
Eqs. (6)-(10) form the basic model for the composite

reservoir with a line source. There are two methods to obtain
pressure solution for the model proposed above. One is using
point function method (Jiang et al., 2014). This method is
based on point function solution. Then the line source can be
obtained by point function solution integral. The other one is to
obtain line source solution directly according to characteristics
of Dirac delta function and Bessel’s function (Zhao et al.,
2014). Both methods can solve this model effectively. The
pressure distribution for a line source is:

p̄D =
¯̃qL

qsc
K0

(√
f RD

)
(11)

where RD is the distance between the line source and pressure
observation point. Now, the continuous point sources solution
has been derived. Then, using line source function superpo-
sition principle (Jiang et al., 2014; Zhao et al., 2014), the
wellbore pressure p̄wD in Laplace space can be obtained. To
consider the finite conductivity fracture in transient pressure
or rate analysis, the solution method which is proposed by
Cinco et al. (1978) is used in our model.

Using Duhamel’s principle (Van Everdingen and Hurst,
1949), the bottomhole pressure solution is obtained consid-
ering well storage effect and skin effect:

p̄wD (S,CD) =
up̄wD +S

u+CDu2 [up̄wD +S]
(12)

The dimensionless well production rate at a constant well-
bore pressure can be defined as follows (Van Everdingen and
Hurst, 1949):

q̄D =
1

u2 p̄wD
(13)

4. Type curves
To obtain the dimensionless wellbore pressure at a constant

dimensionless production rate or production at a constant
wellbore pressure in real space, the Stehfest method can be
used to transform the Laplace space value into the real space
(Cinco et al., 1978; Jiang et al., 2014). The code of the frame-
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Fig. 4. Type curves for MsFHW. Basic parameters: M = 3; DLD = 10; L f =
50; ω = 0.015; λ = 0.00001; CD = 0.00001; S = 0.02; R f D = 20.

work was programed by Matlab 2013a. Then type curves can
be analyzed.

4.1 Model verification

In this model, if some parameters are set to satisfy some
conditions, the new model proposed in this paper can be
converted into some other models. If we set f = u, this
new model can be simplified as single-porosity model in a
homogenous reservoir, this simplified model is similar with
the model proposed by Zerzar and Bettam (2003) and Luo
et al. (2014). Fig. 3 shows the bottomhole pressure curves.
Seen from Fig. 3, this new model can match with the existing
model. This new model is reliable. Also, in our model, the
parameters are set the same as Yuan et al. (2018) (See Fig. 3
in their paper), the results are matched well.

4.2 Type curves

The type curves are demonstrated in Fig. 4, and the
following eight flow regimes are divided based on the type
curves.
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Table 1. Basic parameters for multistage fractured horizontal well in a tight oil reservoir.

Parameters Unit Value

Formation thickness, h m 7

Wellbore radius, rw m 0.1

Hydraulic-fracture half length, L f m 100

Viscosity, µ Pa·s 2.6 × 10−3

Skin factor, S dimensionless 0.005

Wellbore storage coefficient, C m3/Pa 0.01 × 10−6

Matrix radius, R m 50

Fracture permeability, k f h m2 2 × 10−15

Matrix permeability, km m2 0.0001 × 10−15

Fracture porosity, φ f fraction 0.001

Matrix porosity, φm fraction 0.05

Fracture compressibility, Ct f 1/Pa 0.0006 × 10−6

Matrix compressibility, Ctm 1/Pa 0.0008 × 10−6

Hydraulic fracture conductivity, R f mD·cm 4 × 105

Bottom hole flowing pressure, Pw Pa 6 × 106

Hydraulic fracture number, N integer 12

Fracture spacing, DL m 100

Production pressure difference, ∆P MPa 7

Regime 1©: The early wellbore storage period. The slope is
1 in both the pressure and pressure derivative curve in log-log
coordinates.

Regime 2©: The skin factor period. This period is between
wellbore storage and the early bilinear flow.

Regime 3©: Bi-linear flow regime. During this regime, the
gas/oil in fracture will flow into the wellbore perpendicular
to the hydraulic fracture. Both the pressure and pressure
derivative curves show a straight line with 1/4 slope.

Regime 4©: Linear flow regime. During this regime, the
gas/oil in fracture will flow into the wellbore perpendicular
to the hydraulic fracture. Both the pressure and pressure
derivative curves show a straight line with 1/2 slope.

Regime 5©: First radial flow regime. Following regime
4©, if the distance of two adjacent hydraulic fractures is

long enough, this regime will happen. The value in pressure
derivative curves is constant which equal to 0.5/M.

Regime 6©: Transition flow regime. This regime happens
between regime 5© and regime 7©. This regime may disappear
when λ is big.

Regime 7©: Transfer flow regime. In this regime, the oil/gas
will flow from matrix to fracture because the pressure in
fracture decreases largely and the flow from matrix to fracture
becomes an important supplement flowing into the fracture. A
concave appears in pressure derivative curves. It is a typical
characteristic for dual porosity media.

Regime 8©: Later radial flow regime. Following regime 7©,
this regime will happen when the oil/gas flows from fracture
into wellbore and from matrix to fracture get to a balance state.
The value in pressure derivative curves is constant which equal
to 0.5.

5. Field case study and effect of relevant
parameters

5.1 Field case study

F154 block is a fault-lithology tight oil reservoir located
at Gaoqing City, Shandong Province, China. The reservoir is
controlled by faults on the north and south. The objective
interval belongs to the third member of Shahejie Formation
whose sandstone thickness is 0-13 m and the top depth
between 2769-2830 m. Because of the ultra-low permeability,
MsFHW was used to develop this block. Well-P1 is a typical
well in this block and has 12 hydraulic fractures. The basic
parameters for Well-P1 are shown in Table 1. Fig. 5 shows
the history result, the matching result is good enough which
indicates the practical value of the model in this paper.

5.2 Effect of relevant parameters

To better known the effect of different parameters on
tight oil/gas production performance, in this section, four key
parameters were analyzed. The basic reservoir parameters used
are from Well-P1.

5.2.1 Effect of natural fracture permeability

Fig. 6 and Fig. 7 show the natural fracture permeability
effect on transient pressure curves and oil accumulative pro-
duction. It can be seen from Fig. 6 that the natural fracture
permeability mainly affects the regimes from linear regime to
transfer flow regimes. High natural fracture permeability leads
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to a narrow linear flow regime. The reason is that high natural
fracture permeability makes the pressure spreads quickly and
thus the linear is not obvious. From Fig. 7, we can see that
high permeability increases the well accumulative production.
When developing tight oil/gas reservoirs, if the formation
permeability is ultra-low, it’s a better way to fracture the
formation and thus high flow capacity can be created around
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Fig. 5. History matching between the model result and real production data.
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Fig. 7. Oil accumulative production in 20 years predicted with different
natural fracture permeability.

wellbore. That is why the high flow capacity needs to be
created. It is a key technique to make “high flow region”
which also is called SRV (Brown et al., 2011; Stalgorova et
al., 2012a) in tight oil/gas development.

5.2.2 Effect of matrix permeability

Fig. 8 and Fig. 9 show the matrix permeability effect on
transient pressure curves and oil accumulative production. As
can be seen from Fig. 8, the matrix permeability affects the
regimes after linear flow regime. High matrix permeability
leads to the transfer flow regime early. The reason is that
high matrix permeability makes it easy to flow between the
matrix and fracture and thus the pressure drop is smaller
compared with low matrix permeability. From Fig. 9, we can
see that high matrix permeability leads to high oil accumu-
lative production. Therefore, when a tight oil/gas has a very
low permeability, it is necessary to fracture the formation to
achieve high accumulative production.

5.2.3 Effect of matrix size

Fig. 10 and Fig. 11 show the matrix size effect on transient
pressure curves and oil accumulative production. As can be
seen from Fig. 10, the matrix size affects the regimes from
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linear flow regime to transfer flow regime. Big matrix size
leads to a high pressure drop. The reason is that big matrix
size makes the contact surface of matrix and fracture smaller
compared with small matrix size. So the inter-porosity flow
amount between matrix and fracture is smaller. From Fig. 11,
we can see that small matrix size leads to low oil accumulative
production while the effect is relatively smaller than that
natural fracture permeability and matrix permeability.

5.2.4 Effect of fracture spacing

Fig. 12 and Fig. 13 show the fracture spacing effect on
transient pressure curves and oil accumulative production. As
can be seen from Fig. 12, the fracture spacing affects the
regimes from linear flow regime to transfer flow regime. The
pressure drop is relatively small when the fracture spacing
is big. The reason is that big fracture spacing can make the
hydraulic fracture have a big drainage oil area and thus the
flow resistance is smaller around the wellbore. Also, this can
lead to high oil accumulative production seen from Fig. 13.

6. Conclusions
The main purpose of this work is to present the model

0.001

0.01

0.1

1

10

0.001 0.1 10 1000 100000 10000000

p w
D
,d

p w
D

tD/CD

DL = 200, 150, 100, 50

Fig. 12. Effect of fracture spacing on transient pressure curves.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 2000 4000 6000

O
il 

 a
cc

um
ul

at
iv

e 
pr

od
cu

tio
n,

 m
3

Time, days

DL = 50, 100, 150, 200

Fig. 13. Oil accumulative production in 20 years predicted with different
fracture spacing.

and results of an extended study on the performance analysis
of multistage fractured horizontal wells. The motivations for
the research subject of this study came from the fact that
the complexity of hydraulically fractured wells is always
greatly affected by hydraulic fracturing. In this paper, with
the semi-analytical method, the performance analysis model
was established considering unsteady transfer flow between
matrix and fracture. Sensitivity analyses over four uncertain
parameters were given. Based on the results presented, the
following conclusions are obtained:

1) The mathematical model was derived for performance
analysis of multistage fractured wells. Eight possible flow
regimes exists based on pressure transient analysis and
rate transient analysis which are the early wellbore stor-
age period, the skin factor period, bi-linear flow regime,
linear flow regime, first radial flow regime, transition flow
regime, transfer flow regime, and later radial flow regime.

2) The model can be used for real data history matching.
The parameters history matching results for Well-P1 in-
dicates this model is a good tool for MsFHW production
prediction.

3) Natural fracture permeability and fracture spacing has
great effect on well productivity. A higher natural fracture



158 Zhao, K. and Du, P. Advances in Geo-Energy Research 2020, 4(2): 152-161

permeability and bigger fracture spacing always leads to
higher gas production rate because they either increase
the flow capacity in reservoir or increase the drainage
area. Matrix permeability and matrix size also have
effects on well productivity. A higher matrix permeability
and small matrix size always lead to higher gas produc-
tion rate because they increase the flow mass between
matrix and fracture.

Nomenclature
k = Permeability, m2

µ = Fluid viscosity, Pa·s
η = Diffusivity ratio, fraction
u = Laplace space variable with respect to tD
h = Reservoir thickness, m
L = Reference length, m
Kk(x) = The modified Bessel function of second kind
qsc = Production rate, m3/s
C = Wellbore storage, m3/Pa
S = Skin factor, dimensionless
L f = Fracture half length, m
t = Time, s
N = Facture number
DL = Fracture spacing, m
r,θ ,z = Directional coordinates
φ = Porosity, fraction
Ct = Total compressibility, Pa−1

p = Pressure, Pa
ω = Storability coefficient
λ = Inter-porosity coefficient
q̃ = Point source, m3/s
R = Matrix radius, m
rm = Distance to the matrix center, m
R f = Hydraulic fracture conductivity, mD·cm

Subscripts and superscripts

D = Dimensionless
i = Initial
h = Horizontal direction
v = Vertical direction
f = Fracture
− = Laplace domain
m = Matrix
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Appendix A
Dimensionless variables:

pD =
2πk f hh(pi− p)

qscµ
(A-1)

CD =
C

2π (φCt)t+m hL2 (A-2)

tD =
k f ht

(φCt)m+ f µL2 (A-3)

zD =
z
L

√
k f h

k f v
(A-4)

rD =
r
L

(A-5)

h1D =
h
L

√
k f h

k f v
(A-6)

λ =
kmL2

k f hR2 (A-7)

ω =
φ fCt f

φ fCt f +φmCtm
(A-8)

rmD =
r
R

(A-9)

Appendix B
Using the dimensionless variables (see Appendix A) for Eqs. (A-1)-(A-4), the following equations can be derived:

1
r2

mD

∂

∂ rmD

(
r2

mD
∂ pmD

∂ rmD

)
=

(1−ω)

λ

∂ pmD

∂ tD
(0≤ rmD ≤ 1) (B-1)

PmD (rmD,0) = 0 (B-2)

∂ pmD

∂ rmD

∣∣∣∣
rmD=0

= 0 (B-3)

pmD|rmD=1 = p f D (B-4)

Taking Laplace transformation to tD, Eqs. (B-1)-(B-4) becomes:

1
r2

mD

∂

∂ rmD

(
r2

mD
∂ p̄mD

∂ rmD

)
=

(1−ω)

λ
up̄mD (0≤ rmD ≤ 1) (B-5)

p̄mD (rmD,0) = 0 (B-6)

∂ p̄mD

∂ rmD

∣∣∣∣
rmD=0

= 0 (B-7)

p̄mD|rmD=1 = p̄ f D (B-8)

Solve the Eqs. (B-5)-(B-8):

p̄mD(rmD,u) =
p̄ f D

sinh
√

(1−ω)u
λ

sinh
[

rmD

√
(1−ω)u

λ

]
rmD

(B-9)
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Using the dimensionless variables (see Appendix A), Eq. (A-5) can be derived:

1
rD

∂

∂ rD

(
rD

∂ p f 1D

∂ rD

)
+

1
r2

D

∂ 2 p f D

∂θ 2 +
∂ 2 p f D

∂ z2
D

= ω
∂ p f D

∂ tD
+ 3λ

∂ pm

∂ rmD

∣∣∣∣
rmD=1

(B-10)

Taking Laplace transformation to tD, Eq. (B-10) becomes:

1
rD

∂

∂ rD

(
rD

∂ p̄ f D

∂ rD

)
+

1
r2

D

∂ 2 p̄ f D

∂θ 2 +
∂ 2 p̄ f D

∂ z2
D

= ωup̄ f D + 3λ
∂ p̄m

∂ rmD

∣∣∣∣
rmD=1

(B-11)

With equation Eqs. (B-9)-(B-11), the flow equation in inner region can be derived:

1
rD

∂

∂ r

(
rD

∂ p̄ f D

∂ rD

)
+

1
r2

D

∂ 2 p̄ f D

∂θ 2 +
∂ 2 p̄ f D

∂ z2
D

= f p̄ f D

f = ωu+3λ

(√
1−ω

λ
ucoth

√
1−ω

λ
u−1

) (B-12)


