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Abstract:
In Algeria, wells drilled in the Illizi Basin suggest the presence of a significant areal
trend of Devonian coal seams with the thickest coal seams penetrated in the Lower
Devonian stratigraphic unit F6. This makes them some of the oldest thick coal seams
encountered. These coals exist between approximately 1500 and 4000 meters below
surface. In particular, numerous coals in these formations drilled in the Oudoume field have
recorded gas shows while drilling. A study of basic well log data from five wells penetrating
Illizi Basin coals is conducted to characterize their distribution and provisionally evaluate
their gas-bearing potential using petrophysical analysis coupled with machine learning. A
simple multi-layer perceptron model (one hidden layer with four nodes) is used in a novel
way to replicate estimates of gas saturation in the coal samples calculated approximately
with the modified Kim equation. It does so by considering three commonly measured
well-log variables: gamma ray, sonic travel time, deep resistivity (307 data records from
the five wells studied). The log-calculated approximations (modified Kim equation) can
be matched to better than plus or minus 1 scf/ton by the multi-layer perceptron model.
The results and analysis presented provide preliminary encouragement that suggests the
presence of a potentially extensive gas-bearing Devonian coal trend in the Illizi Basin that
is worthy of further exploration. Future work is required to integrate data from additional
wells and laboratory analysis of core samples to verify the extent of that coal trend and
to quantify its gas concentrations.

1. Introduction
Australia, Canada, China, India and the United States of

America (USA) are countries that produce significant quanti-
ties of coal-bed methane (CBM). The Energy Information Ad-
ministration of the USA (EIA) reports proven CBM reserves
for the U.S. of about 11.9 trillion cubic feet (tcf) and CBM
production of about 980 bcf in 2017 (EIA, 2020), making it
one of the most prolific CBM exploiting countries.

Coal is constituted by almost pure carbon, ash, moisture
and gas with unique physical and chemical characteristics
and well-log responses that are distinct from conventional
reservoirs (Flores, 1998, 2013; Reddy, 2010). CBM is formed
partly by biogenic processes at shallower depths and by the

decomposition and catagenesis of the organic components
within coals as they are buried more deeply and the coals
thermally mature (Strąpoć et al., 2011; Moore, 2012). CBM
adheres to fracture and pore surfaces within the coal as it is
gradually expelled from the coal matrix (Laxminarayana and
Crosdale, 2002; Crosdale et al., 2008; Busch and Gensterblum,
2011). This means that CBM production methods differ sub-
stantially from those used to produce gas from highly porous
conventional reservoirs (Ayers, 2002; Liu et al., 2011; Seidle,
2011).

Natural gas storage and flow within coal seams is complex
partly because coal formations are for the most part tight
formations (low in porosity and permeability) and because they
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typically demonstrate two distinct distributions of porosity
(Levine, 1993; Liu et al., 2015) and three distinct fluid
flow sequences which are hydrodynamically driven by the
interactions of water and gas making up the formation fluids.
These three flow processes begin with desorption of gas
from within the coal matrix. This diffused gas then flows
through the coal matrix porosity network until it reaches one
of the intermittently spaced cleats or natural fractures. Once
gas enters the cleat system it is transported by laminar flow
through that cleat or natural facture system which in its natural
state is filled mainly with water.

CBM can be effectively produced from sub-surface coal
resources by reducing their pressure by pumping out the
water from the cleat systems (Bodden and Erlich, 1998; Li
et al., 2015). Typically, the water-saturated cleat systems of
CBM formations need to have substantial quantities of water
removed, and the depressurization phase takes substantial time,
perhaps a year or more for each well bore (McLennan et
al., 1995; Li et al., 2018). The induced decline in formation
pressure, resulting over time from the water-pumping / de-
pressurization process, stimulates natural gas desorption from
the coal matrix. The gas desorption rate tends to increase
substantially once the formation pressure falls lower than a
certain threshold (Tang et al., 2017); that threshold varies
from formation to formation depending on the pore-scale
distribution and cleat spacing of the coal. It is at that point
that gas flow into a CBM well bore overtakes the volume of
water being pumped from it.

Gas stored in coal is quite distinct from the way gas
is stored and distributed in conventional porous reservoirs
(Diamond and Schatzel, 1998). Porous reservoirs are dom-
inated by free gas filling the pore space and, in certain
formations, partly in natural fractures. On the other hand,
most gas stored within coal seams is adhered to its cleat
and pore surfaces (Laxminarayana and Crosdale, 1999). The
microporosity network distributed throughout the coal matrix
consists of a huge surface area, despite the matrix porosity of
coal typically being less than 2.5%. Such a large surface area
means that it is available for gas to adhere to. This results
in low porosity coal seams being able to store substantially
more gas in their microporous matrix, in an adhered state, than
macroporous sandstone and carbonate conventional reservoirs.
Their commercial appeal lies in that characteristic. Fracture
stimulation has the potential to release substantial gas from a
coal’s microporous network (Lu et al., 2019), but not all coals
release their gas easily (Olajossy and Cieślik, 2019).

Gas moves or flows within the coal matrix through the mi-
croporous network, primarily by diffusion. Rates of diffusion
are determined by gas concentration gradients that evolve in
the microporous network (Busch et al., 2006; Masterlerz et
al., 2008). This can be modelled using diffusion theory and
Fick’s law to determine a diffusion coefficient (Pillalamarry
et al., 2011). As gas enters the cleat (fracture) system of
a coal seam, its flow tends to follow Darcy’s law, as it
would in conventional porous reservoirs. Coalbed methane
reservoir characterization and production performance have
been extensively studied and modelled in recent years (Pan and
Wood, 2015). It is clear that certain reservoir parameters and

adverse geomechanical shrinkage changes to the coal matrix
during methane desorption can result in slow release of gas
from coal seams (Olajossy, 2017).

The CBM production process therefore involves three
distinct flow stages (Bustin and Clarkson, 1998; Clarkson
and Bustin, 2000): (i) initially dominated by formation water
pumped from the cleats; (ii) water with dispersed natural gas
bubbles as the formation pressure declines; the gas is not
present in sufficient quantities to form a distinct two-phase
fluid; and, (iii) a two-phase fluid system eventually with gas
exceeding water; the relative permeability of the formation to
gas exceeds that of water during this final gas-depletion flow
phase (Crosdale et al., 2008).

The dewatering phase of CBM production involves high
operating costs associated with energy requirements and wa-
ter handling. The water produced is not clean but typically
contaminated with mineral salts and some heavy metals. This
means that it must be treated and/or reinjected to adequately
dispose of it in a safe and environmental manner. The cost
of produced-water handling has a negative impact on the
economic viability of most CBM projects. In agricultural
regions the risks of soil contamination from CBM-produced
water need to be mitigated.

These distinctive features of coals and the extent to which
they store and release the gas they contain require careful
characterization in order to understand their potential as com-
mercial sources of gas. This is particularly so for deeply buried
coal sequences that are not easily available for near-surface
sampling and analysis. Well-log data can help to characterize
deep poorly explored coals and provide provisional analysis of
their gas bearing potential as well as insight to their physical
properties. This is the case with the Devonian coals of the Illizi
Basin studied here with the aid of a machine learning model
to relate well log variables to estimates of their gas content.

2. Geological setting and energy industry
implications

The Illizi Basin (Fig. 1) has a surface area of 108,424 km2.
It has been studied extensively since 1956 with the discovery
of the large Edjeleh oil field in the Amenas district close to
the border with Libya. Some 700 explorations and appraisal
wells have been drilled in the basin with a discovery success
rate of 23%. This has resulted in ninety eight discoveries (54
oil and 44 gas fields). The significant field discoveries include
Tin Fouyé, Zarzaitine, Edjeleh, Alrar, Ohanet, and Stah. The
Oudoume field is located in the western part of the Illizi
Basin (Fig. 1). Available well information identifies numerous
methane-bearing coals are distributed within the Devonian
formations present in the Oudoume field and some surrounding
wellbores (Fig. 2). A well from this field (OU), together with
four other wells (OIT, IH, SED and TZM), distributed across
the north and central areas of the Illizi Basin, provide insight
to the distribution and gas-bearing nature of the coals in this
part of the basin.

The Illizi Basin was dominated through its depositional
history by shallow marine conditions along a continental
margin (Beuf et al., 1972; Eshard et al., 2005). Erosion of the
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Fig. 1. Location of five studied wells used to establish the characteristics of Devonian coal seams in the north and central Illizi Basin, Algeria.

adjacent continent deposited a major Paleozoic sedimentary
sequence that is overlain by Mesozoic sediments deposited
above the regionally extensive and clearly distinguished Her-
cynian unconformity (Ghienne et al., 2007). The most im-
portant oil-bearing systems within the Illizi Basin include
Cambro-Ordovician and Devonian reservoirs.

Reservoirs Unit II (Cambrian) has a mean thickness of
250 m. It consists of fluvio-deltaic deposits (Fekirine and
Abdallah, 1998) and produces oil in the West Ihansatene,
East Tiguentourine, Ouan Taredert and Collenias anticlines.
Reservoir Unit III-2 (Ordovician), consists of fine to coarse
quartzitic sandstones with thicknesses varying from 0 to 200
m (Boote et al., 1998; Le Heron et al., 2009). This reservoir
produces through fractured zones in the Hassi Tabtab and
Assekaifaf fields. Reservoir Unit IV (Ordovician) consists of
fluvio-glacial to periglacial deposits with thickness varying
from 10 to 350 m (Hirst, 2012). Although there are thin coal-
like seams present in the Ordovician Unit IV of well TZM, the
coal seams are primarily developed in the Lower and Middle
Devonian sections F6 to F2 in the wells studied (Fig. 2).
Middle Devonian coals occur and have been studied in several
countries, including Canada, China Russia, Spain, United
Kingdom and United States (Kennedy et al., 2013). Devonian
coals are of interest because they represent some of the earliest
coals formed on Earth, shortly following the colonization of
terrestrial areas by land plants. Their compositions vary but
some, such as the Middle Devonian coals of China tend to be
thin, discontinuous, and rich in liptinite, cutinite and micro-
sporinite (Dai et al., 2006). Hence, the presence of thick Lower
and Middle Devonian coals in North Africa is worthy of

further investigation.
In the short term, Algeria and much of the rest of North

Africa has sufficient oil and gas resources in conventional
reservoirs to sustain exports and in most cases meet domestic
energy demand. However, in the medium term, as conventional
reservoirs deplete, replacing gas resources will become more
challenging, particularly for local consumption in isolated
areas. As reservoirs deplete many existing wells are shut-
in and ultimately plugged and abandoned. In depleted fields,
where multiple existing well bores penetrate thick coal seams
at depths between about 1,500 to 4,000 meters, such as the
Oudoume field in Algeria, there is the potential to convert the
redundant wells into coal seam gas producing wells, which is
worthy of evaluation. However, there would likely be several
technical downhole challenges to overcome in these cased
wellbores for this to be achieved. Re-use or sidetracking from
existing wells could be commercially attractive as it eliminates
at least some drilling costs and gas production from coals
could be tied into existing production infrastructure. However,
as revealed by this study the development and thickness of
the Devonian coal seams can vary substantially over short dis-
tances. Indeed, the subsurface distribution of Devonian coals
in Algeria is not yet well studied or understood. The future
commercial potential justifies studies that better delineate the
spatial distribution and thickness variations of Devonian coals
across Algeria and surrounding parts of North Africa.

3. Coalbed methane log analysis
Provided good quality density, acoustic and neutron well
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Fig. 2. Stratigraphic column representing the geologic formations and events characterizing the Illizi Basin, Algeria. Modified after Eschard et al. (2010).
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Table 1. Generic coal type identification based on wireline log responses (Mullen, 1989a (USA); Pan and Huang, 1998 (China); Deng et al., 2013 (China)).

Coal Rank Matrix Density(*) Bulk Density Acoustic Travel Time Neutron Porosity
ρm (g/cm3) ρb (g/cm3) Dt (µs/ft) N phi (v/v)

Lignite 1.1 0.5 − 1.22 140 − 180 0.45 − 0.55

Immature Bituminous 1.25 1.22 − 2.00 110 − 140 0.55 − 0.60

Mature Bituminous 1.35 1.22 − 2.00 95 − 110 > 0.60

Anthracitet 1.5 1.3 − 1.9 80 − 90 0.35 − 0.45

(*) Note: The relationship between coal rank and coal density is complex as coal density is influenced by both organic
and inorganic constituents. The matrix densities provided here are approximate but consistent with the relationships
between coal density and coal rank used in other studies (Zhao et al., 2015 (China); Huang et al., 2018 (China)).

log data is available, which typically requires good borehole
conditions during the logging runs, it is possible to determine
the volumetric key compositional components of coal seams
(ash, fixed carbon, moisture and volatiles). It is also possible
to calculate with reasonable accuracy gas content (volume per
unit mass of coal) and the volume of gas initially in place
(GIIP) and to make estimates of potent gas productivity.

The baseline-value assumptions (Mullen, 1989a; Pan and
Huang, 1998; Deng et al., 2013) for the log curves with respect
to screening for coal are:

Maximum coal density (ρbmax) = 2.0 g/cm3 (This value is
preferred for screening purposes to 1.75 g/cm3 as a few coals
observed in China have densities above 1.8 g/cm3, for example
Deng et al. (2013)).

Minimum coal neutron porosity (N phimin) = 0.35 v/v
Minimum coal acoustic travel time (Dtmin) = 95 µs/ft

(311.7 µs/m)
Minimum coal formation resistivity (Rtmin) = 10 Ωm·m,
Wireline log screening techniques initially identify the

presence of coal seams by evaluating the log curve dataset
for the distinctive combined log responses of coals, i.e., Rt >
10.0 Ωm·m, ρb < 2.0 g/cm3, Dt > 95 µs/ft and N phi >0.35.

The generic type of coal present can be distinguished
(Table 1) based on four well-log inputs:

• Apparent clean coal (volume of ash = 0)matrix density
(ρm)

• coal bulk density ρb (g/cm3)
• coal neutron porosity Nphi (v/v, limestone units)
• coal acoustic travel time Dt (µs/ft)
The apparent clean coal (volume of ash = 0) matrix density

(ρm) is a key metric to establish for reliable quantitative log
analysis of coals. If laboratory analysis of coal core samples is
available then ρm for coal can be approximately calculated (Eq.
(1); see note to Table 1) from the volumetric coal components:
lignite (v/v); bituminous coal (v/v); and anthracite (v/v).

ρm = 1.1VL +1.3VB +1.5VA (1)

Log data cross plots can be used to establish ρm where
good quality raw log data (ρb, N phi and Dt) is available.
However, this is not always possible for the following reasons:

• Some borehole do not have log data suites that include
N phi.

• Older wireline density tools (e.g., FDC-type) are unreli-
able at readings of ρb <2.0 g/cm3.

• Poor hole conditions due to washouts in the coal sections
making wireline log readings unreliable.

An empirical relationship useful for determining the appar-
ent matrix density for coal (Aρmatrix) is provided in Eqs. (2)
and (3). It uses just N phi and ρb data with Eq. (2) determining
apparent phi (phia) as an intermediate step.

Phia = 0.5
(

N phi+
ρb −2.71

1.71

)
(2)

Aρm =
ρb −Phia
1.0−Phia

(3)

Based on ρb, N phi and Dt data listed in Table 1, Aρm is
1.3 g/cm3 for lignite, 2.0 g/cm3 for bituminous coal and 2.1
g/cm3 for anthracite.

The volumetric coal components can be calculated using
Eqs. (4)-(7) from the density log data provided ρm is reliably
known or determined.

VAsh =
ρb −ρm

2.5−ρm
(4)

where VAsh refers to the volume of ash. 0<= VAsh <=0.40
constraints are typically applied to avoid calculating a negative
value for VM .

VF = 0.512−0.512VAsh (5)

where VF refers to the volume of fixed carbon in the coal.

VM = 0.0461−0.1VAsh (6)

where VM refers to the volume of moisture in the coal.

VV = 1.0−VAsh −VF −VM (7)

4. Determination of gas content of coal from
log analysis

There are several empirical equations applied in various
basins to estimate the sorbed natural gas volumes in coals
(Gc) in standard cubic feet per ton of coal (scf/ton). The
Kim equation, Mavor, Close and McBanner equation and the
Mullen equation are the most frequently adopted (Crain’s
Petrophysical Handbook, 2020). With most of the CBM equa-
tions used today based on the Kim equation or modification
of it.
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The Kim equation (Kim, 1973) is calculated using Eqs.
(8)-(10):

GcKim = 75(1−Vm −Vash)(KoPNo
f −bTf ) (8)

where:

ko = 5.6+0.8
VF

VM
(9)

no = 0.39−0.1
VF

VM
(10)

b = 0.14
Pf = formation pressure (atmospheres)
Tf = Temperature in (oC)
Modifications to the calculated gas volume are also re-

quired to express them in dry terms.
Vw = gas volume in moist coal
Vd = gas volume in dry coal
Vw/Vd = 0.75
A modified Kim equation (Susanto et al., 2018) estimates

the formation pressure and temperature using the depth and
depth-related gradients for temperature and pressure using Eq.
(11).

GcKimm =75(1−VM −Vash)Ko
(

KG7h
100

)No

−75(1−VM −Vash)

(
bKG8h

100
+KG9

) (11)

where:
h = depth in meters
KG7 = prevailing pressure gradient (atm per 100 meters)
KG8 = prevailing temperature gradient (oC per 100 me-

ters)
KG9 = prevailing surface temperature (oC)
The simpler Mullen equation (Mullen, 1989b) was devel-

oped based on empirical data from the San Juan basin (United
States) and establishes Gc using only bulk density (ρb) log data
using Eq. (12).

GcMullen = 1053−542ρb (12)

The Mavor, Close and McBaner equation (Mavor et al.,
1990) establishes Gc using only Vash and Vm as expressed by
Eq. (13).

GcMavoretal = 601.4− 751.8Vash

1.0−Vm
(13)

The Kim formula does have some limitations to its appli-
cation:

• It does not consider gas saturation and, as many coals
are undersaturated, gas saturation can vary substantially from
coal seam to coal seam.

• It does not consider coal compositional impacts on gas
concentrations

• The original Kim formula was developed for the bitumi-
nous coals of (Pennsylvania, USA) meaning that it may not
work well for different ranks of coal in different geological
settings.

It is the modified Kim equation that is used here to
analyze the potential gas contents of the Illizi Basin Devonian
coals, because it takes into account pressure and temperature
gradients as well as the volumetric coal components.

5. Results

5.1 Coal characterization in the Illizi Basin

The five Illizi Basin wells were evaluated using the
Petrolog petrophysical package (Petrolog, 2019). The chal-
lenge for coal-related petrophysical analysis is the absence of
neutron and density logs in all but one of the wells studied
(Table 2). Only the In-Houdet-101 well has complete neutron
and density logs across the Devonian coal zones. This facil-
itates the approximation of the volumetric coal components
(VAsh = 0.1667; VF = 0.4308 ; VM = 0.0294 ; VV = 0.3731) for
that well. Although these are well-log-based approximations,
in the absence of detailed coal sample analysis this are used
as best estimates for this study. Those components are then
applied by the Petrolog petrophysical software to determine
the modified Kim gas concentration (GcKimm) for each well
using Eq. (11).

The basic well logging suite gamma ray (GR), acoustic
travel time (DT) and deep resistivity (RT) (Table 2) are
available for the four wells that penetrate Devonian coals.
Table 3 lists the ranges of those log values, the depths for
the coal seams penetrated and the range of calculated GcKimm
values for the five wells evaluated.

Table 2. Availability of specific well log data in each of the Illizi Basin wells evaluated.

Well Resistivity Spontaneous Potential Temperature Sonic Travel Time Gamma Ray Caliper Neutron Density
RT SP T DT GR Cal Neut Pb

In-Houdet Yes Yes Yes Yes Yes Yes Yes Yes

OIT Yes No No Yes Yes Yes No No

OU Yes Yes No Yes Yes No Yes No

Sedoukane Yes No No Yes Yes No No No

Tin Zemane No Yes No Yes Yes No No No
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Table 3. Basic well log characterization of Devonian coal seams drilled in the Illizi Basin. GR = gamma ray; DT = acoustic travel time; RT = deep
resistivity; GcKimm = Kim gas concentration calculated with the Kim equation.

Well
Depth Depth GR GR DT DT RT RT GcKimm GcKimm
Min Max Min Max Min Max Min Max Min Max
Meters Meters API Units API Units µft/s µft/s Ohm.m Ohm.m scf/ton scf/ton

In-Houdet 2399.39 2434.13 9.11 10.69 100.03 130.11 23.71 257.74 71.04 71.99

OIT 1696.97 2275.03 127.52 316.88 100.04 122.88 20.80 1544.17 67.30 71.11

OU 2980.03 3779.52 6.43 44.01 100.02 136.47 18.48 279.42 74.66 77.77

Sedoukane 2816.05 2834.34 107.11 159.61 100.02 103.65 31.99 90.51 73.91 73.99

Tin Zemane 1371.75 1424.18 31.23 85.94 101.66 144.59 N/A N/A 82.11 82.81

Table 4. Summary of coal seams identified by well logs in five wells from the Illizi Basin.

Well Formation Cumulative Coal Thickness Thickest Individual Coal Seam
(feet) (meters) (feet) (meters)

In-Houdet Devonian F2 31.5 9.6 7.5 2.3

OIT

Devonian shaly sequence above F6 26 7.9 11 3.4

Devonian F6M1 40.5 12.3 18 5.5

Total Coal Detected 66.5 20.3

Oudoume OU

Devonian shaly sequence above F6 27.5 8.4 5.5 1.7

Devonian F6M1 67.5 20.6 53.3 16.2

Total Coal Detected 95 29

Sedoukane Devonian shaly sequence above F6 6 1.8 4 1.2

Tin Zemane

Serie Tin Meras (Carboniferous) 9.5 2.9 1.5 0.5

Ordovician Unit IV-2/1 2 0.6 1.5 0.5

Total Coal Detected 11.5 3.5

As well as characterizing the Illizi Basin Devonian coal
seams a further objective of this study is to determine whether
machine learning can be used with the basic well-log data
available (i.e., GR, DT and RT) to predict GcKimm with
accuracy.

Petrophysical evaluation identifies a significant number of
individual coal seams in the five wells studied. The cumulative
thickness, stratigraphic location and the thickest single coal
seam in each well is summarized in Table 4.

The petrophysical characterization of the coal seams iden-
tified in each of these wells is illustrated in Figs. 3-9.

It is apparent from Table 4 and Figs. 3-9 that the best
development of Devonian coals is in wells OU (20 m) and OIT
(29 m) in the central part of the Illizi Basin with these coals
thinning to the west (∼ 10 m in In-Houdet) and gradually
disappearing to the east and Northeast (1 m in Sedoukane
and 0 m in Tin Zemane). Although the five wells studied are
spread over a wide area (Fig. 1), The data suggests that there
is a north-south accumulation of thick Devonian coal seams
with CBM potential extending in a trend passing through the
Oudoume field and at least as far south as the OIT well. There
are minor traces of younger (Devonian or Carboniferous)
“coals” and some Ordovician coal traces in well Tin Zemane
. Although these traces are screened as “coals” they are more

likely to be organic-rich marine bands as true “coals” are
typically considered to originate from land plants from the
Devonian period onwards. However, there are no coals in the
Devonian F2 to F6 stratigraphic sequences in that well where
most of the Devonian coals are located in the other four wells,
indicating the main Devonian coals do not extend that far to the
northeast. Studies of additional wells are required to confirm
the presence and extent of the Devonian coals identified in the
Illizi Basin.

5.2 Multi-layer perceptron model applied to predict
coal seam gas concentration from basic well-log
data

A multi-layer perceptron (MLP) machine learning model
(see Appendix A for details) with one hidden layer and four
nodes is applied to relate well-log data to coal seam gas
concentration estimates. The MLP model for the Devonian
coals of the Illizi Basin consists of four input variables (depth
in meters, GR, DT and RT log values) with the calculated
GcKimm value as the dependent variable. The entire dataset of
coal intervals evaluated consists of 382 data records from the
four wells with Devonian coals detected:

In-Houdet-101 has 63 coal data records
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Fig. 3. Coal seams present in well In-Houdet within the predominantly sandy Devonian F2 unit. See the Abbreviations section for the acronyms used in the
heading of this composite well log.

Fig. 4. Coal seams present in well OIT (Zone 1) within the Devonian shaly sequence above zone F6. See the Abbreviations section for the acronyms used
in the heading of this composite well log.
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Fig. 5. Coal seams present in well OIT (Zone 2) within the predominantly shaly Devonian F6 M1 unit. See the Abbreviations section for the acronyms used
in the heading of this composite well log.

Fig. 6. Coal seams present in well OU (Zone 1) within the Devonian shaly sequence above zone F6. See the Abbreviations section for the acronyms used
in the heading of this composite well log.
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Fig. 7. Coal seams present in well OU (Zone 2) within the predominantly sandy Devonian F6M1 unit. See the Abbreviations section for the acronyms used
in the heading of this composite well log.

Fig. 8. Two thin isolated coal seams present in well Sedoukane (SED) within the Devonian shaly sequence above zone F6. See the Abbreviations section
for the acronyms used in the heading of this composite well log.
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Fig. 9. Thin coal seams present in well Tin Zemane (TZM) within the Serie Tin Meras (Devonian or Carboniferous?) above Devonian F2 unit. See the
Abbreviations section for the acronyms used in the heading of this composite well log.

Table 5. Weights and biases for the trained coal (GcKimm) MLP machine-learning model.

Weights and Biases for Trained MLP Model to Match Estimated GcKimm (scf/ton)
J=4 Node 1 Node 2 Node 3 Node 4
Input to Hidden layer:

Bias (B j) 0.167304635118786 0.270751983103359 -0.470070606568217 0.324542869963393

Weight (W1J) 0.503664175713665 -1.33494094674571 -0.0705297471761705 0.77338499662636 (Depth)

Weight (W2J) 0.0049582530392568 0.163904172746696 0.308998821485765 -0.44044679103857 (GR)

Weight (W3J) -0.173792725522035 0.22109228700796 0.286376239844426 0.459362821133492 (DT)

Weight (W4J) -0.184588738450031 0.180234563255466 -0.126799090116702 -0.127088398023484 (RT)

Hidden to Output layer: Bias (Bk)

Weights 0.558862254950964 -1.34455102951834 0.004416265406478 0.692837269822662 0.135823020787241

OIT-1 has 117 coal data records
OU-101 has 190 coal data records
Sedoukane-1 has 12 coal data records
The 307 coal data records from wells OIT and OU were

used to train and validate the MLP model. Once trained the
MLP model was applied to predict the GcKimm values the 75
data records from wells In-Houdet and Sedoukane. For MLP
training the 307 coal data records from wells OIT-1 and OU-
101 were randomly divided into 269 (∼ 88%) allocated to
the training subset and 38 (∼ 12%) data records allocated to
the validation subset. The four-node / 1-hidden layer MLP

trained model achieved estimated GcKimm replication for the
training subset with MSE = 0.000995 (normalized data) and R2

= 0.9830. The validation subset data-record matches showed
comparable results MSE = 0.000942 (normalized data) and
R2 = 0.9866 providing confidence in the optimized solution
derived. Fig. 10 illustrates the trained MLP solution applied to
all 307 data records of the training and validation subsets with
GcKimm expressed in actual units (not normalized terms).

The weights and biases of the trained MLP solution (Table
5) are applied to the testing subset consisting of 75 Devonian
coal data records from wells In-Houdet-1 and Sedoukane-1
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Fig. 10. Matches for dependent variable (GcKimm) for all data records in the
training and validation subsets applying the trained MLP solution.
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Fig. 11. Matches for dependent variable (GcKimm) for all data records in the
training and validation subsets applying the trained MLP solution.

with a comparison of predicted versus calculated GcKimm
illustrated in Fig. 11, with GcKimm expressed in actual units
(not normalized terms).

The root mean square error (RMSE) achieved for the
dependent-variable matches of the testing subset is less than 1
scf/ton, which suggests that the MLP model offers sufficient
accuracy to estimate gas concentration in the Devonian coals
from basic well log data (GR, DT, RT) and depth.

5.3 Plans for future refinements to the MLP model

The results of the MLP model developed and evaluated by
this study are an encouraging outcome that could be used to
evaluate the Devonian coals penetrated by other well bores
with limited well log information. However, confidence in
the MLP model could be increased by adding additional data
records from other Illizi Basin wells that have penetrated
Devonian coals. This MLP machine-learning petrophysical
model would also be further refined and substantially improved
by combining it with coal sample laboratory analysis and ex-
periments to provide more extensive coal component analysis.
Future work is planned to do this, and to evaluate a wider
range of well-log variables in conjunction with other machine
learning algorithms.

6. Discussion
This study has described the presence of a thick, but

spatially limited, areal trend of Devonian coals in the Illizi

Basin based on the study of just a five wells. Moreover, it
is clear that with data from a limited suite of basic well
logs, recorded in most wells drilled, those coal seams can
be successfully identified and characterized in terms of their
thickness and gas potential. Machine learning models can
evaluate the approximate well-log data calculations to replicate
their gas concentration estimates for those coal. Unfortunately,
there are no other published studies that assess and character-
ize Devonian coals in Algeria or on a regional basis using
available well-log data.

There are many other wellbores drilled in the Illizi Basin
that could be used to further delineate the extent of the thick
Devonian coal areal trend. Unfortunately, most of those wells
have only recorded a basic suite of well log data (GR, DT and
RT). This suggests that there is considerable scope to conduct
more extensive regional studies using basic well log data to
better delineate and characterize Devonian coals and their gas
production potential. The results of this study demonstrate
that meaningful analysis of the potential gas concentration and
thickness of the coals penetrated by those wellbore could be
established from limited available well log data. This would
enable a more realistic quantitative assessment of the coalbed
methane potential associated with the Devonian coals of the
Illizi Basin and more regionally across Algeria and North
Africa.

7. Conclusions
The five-well petrophysical study conducted on Devonian

coals in the central and northeastern portion of the Illizi Basin
(Algeria) identifies the presence of a substantial but variable
thickness of such coals. This study characterizes these coals
with the following findings:

The Devonian coals are best developed in terms of thick-
ness in an areal trend near to the center of the Illizi Basin in
the vicinity of the Oudoume field (29 m). Based on just five
wells, the coals appear to extend approximately north -south
towards well OIT-1 (20 m). That trend needs to be further
delineated with additional well data.

The thickest coal seams are developed in the Lower De-
vonian stratigraphic unit F6 with the thickest individual coal
seam exceeding 16m in Oudoume field.

The available petrophysical information (a basic suite of
well logs) is used to calculate gas content of the Devonian
coals with the modified Kim equation. These calculations
reveal that gas content can be provisionally estimated to vary
from 67 to 77 scf/ton.

A simple multi-layer perceptron (MLP), machine-learning
model using the basic well-log data for gamma ray, sonic travel
time, deep resistivity and depth is able to replicate the log-
based gas content estimates calculated with the modified Kim
equation to an accuracy of less than plus or minus 1 scf/ton.

To be clear, as no gas-desorption tests were conducted on
the coal seams logged in the five wells studied log-derived
gas contents can only be considered as preliminary approxi-
mations. The “accuracy” of the machine-learning estimates is
with respect to the Kim-formula calculations not the actual
gas contents of the coals. The actual gas content of the coals
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will remain unknown until laboratory analysis is conducted.
The MLP model, with four nodes in a single hidden

layer, offers potential to assist in further characterizations and
estimations of the coalbed methane resource potential in the
Devonian coal areal trend present in the central part of the
Illizi Basin exploiting additional well data. The results reported
justify expanding this study to include additional well data
comprising well-log variables and down-hole sample analysis.

Nomenclature
The abbreviations used in the headings to Figs. 3-9 are:
CPX = Complex lithology interpretation
SP = Spontaneous potential [mV]
SWE-CPX = Effective water saturation [v/v]
SWT-CPX = Total water saturation [v/v]
PHIS = Sonic porosity [v/v]
PHIE = Effective porosity [v/v]
PHXO = Flushed zone porosity
PHSW = Porosity*water saturation [v/v]
VASH = Volume of ASH [v/v]
VFC = Volume of fixed carbons [v/v]
VVOLMAT = Volume volatile matter [v/v]
VMOIST = Volume of moisture [v/v]
VGLAUC = Volume of glauconite [v/v]
VSILT = Volume of silt [v/v]
VSND = Volume of sand [v/v]
VHMIN = Volume of heavy minerals [v/v]
VDIS = Volume of dispersed clay [v/v]
DT = Sonic [µs/ft]
NEUT = Neutron [NAPI]
GKIM = Coalbed methane gas volume-kim equation

[CF/T]
GLANG = Coalbed methane gas volume-langmuir equa-

tion [CF/T]
GMAVOR = Coalbed methane gas volume-mavor, close,

mcbaner equation [CF/T]
GMODKIM = Coalbed methane gas volume-modified kim

equation [CF/T]
GMULLEN = Coalbed methane gas volume-mullen equa-

tion [CF/T]
VLIGNITE = Volume of lignite coal (from RHOMAA vs

DT crossplot) [v/v]
VBITUMEN = Volume of bituminous coal (from

RHOMCA vs DT crossplot) [v/v]
VANTHRAC = Volume of anthracite coal (from RHOMCA

vs DT crossplot) [v/v]
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Appendix: Multi-layer oerceptron model description
Multi-layer Perceptrons (MLP) are artificial neural networks (ANN) that are widely used to conduct machine learning of

non-linear datasets (Hornik et al., 1989; Fausett, 1994). They consist of a network of interconnections between nodes, analogous
to neuron connections in a brain, is established in a series of one or more layers between input and output interfaces (Haykin,
1994). Sensitivity analysis establishes the number of nodes and hidden layers that provides the best accuracy for a specific
dataset. Weight and bias values coupled with activation or transformation functions determined how values are passed from
one MLP layer to another. In this study, sensitivity analysis identified one hidden layer with four nodes as the optimum MLP
architecture. Further trial-and-error testing showed that a sigmoidal function applied to the hidden layer and a purelin (simple
linear) activation function applied to the output layer generated the best results. A number of data records from the dataset are
used to train the MLP with an additional set of data records (without replacement) used to validate it. Once trained the MLP
can be applied to predict unknown data records.

Eq. (A-1) provides the mathematical determination of the value calculated at the jth node in the MLPNN’s hidden layer.

A j = B j +
m

∑
j=1

wi jXi (A-1)

where A j is the weighted summed value of the n input nodes; Xi is the value at input node i; wi j is the weight assigned to the
connection between the ith input node to the jth (of m) hidden node; and B j is the distinct bias term of the jth node of the
hidden.

The output value for the jth node in the hidden layer is transformed from the value calculated in Eq. (A-1) using and
activation function f (A). In the model developed a sigmoidal activation function f (A) is applied using Eq. (A-2) is expressed
by Eq. (A-3) and is used to transform the A j hidden layer output values from Eq. (A-1).

f (A) =
1

1+ e−A (A-2)

The MLP’s output layer value Ok from the MLPNN is calculated with Eq. (A-3)

Ok =

[
m

∑
j=1

wik ∗Yj

]
+Bk (A-3)

where Yj is the transformed output value for the jth node in the hidden layer;w jk is the weight between the jth hidden neuron
to the one output neuron, k; and, Bk is the bias term associated with the single output neuron. Note that k could be greater
than 1 if there are more than one dependent variables. Ok is then adjusted by a simple linear activation function (purelin) to
calculate Pk, the predicted dependent variable value using Eq. (A-4).

Pk = Ok1 (A-4)

All data input to the MLP is transformed into normalized values. Hence, the predicted values need to be denormalized to
be expressed in the dependent variable units.

A back-propagation algorithm (Battiti, 1992) is applied to optimize the weights and biases as part of the training of the
MLPNN model. The objective function optimized by the back-propagation algorithm is the mean squared error (MSE) of the
difference between the actual and predicted dependent variable value for all data records in the subset used to train the MLP
MSE is calculated with Eq. (A-5):

MSE =
1
n

i=n

∑
i=1

(Ri −Pi) (A-5)

where Ri is the calculated dependent variable value for a given training subset data record i; Pi is the predicted dependent
variable value for training subset data record i; and, n is the total number of training subset data records

Once the MLP model is trained and validated it can be applied to predict the dependent variable values in other data records
for which the input variables are available.


