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Abstract:
To better understand the basic characteristics of Marine-terrigenous Transitional Taiyuan
formation shale (TYS) reservoirs in Hedong coal field, a series of reservoir evaluation
experiments were conducted on 33 core samples, which were collected from an exploration
shale gas well (SL-1). The results show that organic matters in TYS are Type III gas prone
kerogen and are in the high-maturity stage with an average Ro value of 1.87% (ranging
from 1.71% to 2.10%). The total organic carbon (TOC) is ranging from 0.29% to 11.87%
with an average value of 2.91% and gas content is from 0.41% to 2.96 ml/g, which indicates
that TYS still has certain hydrocarbon generation potential despite a mass generation of
hydrocarbons occurred during the geological history. X-ray diffraction analysis shows that
TYS is composed mainly of quartz minerals and clay minerals with an average brittleness
index of 46.5%, which is relatively favorable for hydraulic fracture. Pore size of TYS
ranges from a few nanometers to hundreds of nanometers. The permeability is irrelevant
with porosity and its values are all lower than 0.1 md. The average value of Brunauer-
Emmett-Teller surface area and Barrett-Joyner-Halendar volumes are 8.57 m2/g and 1.84
cm3/100g, respectively. Similar to previous studies, TOC content is a decisive control on
gas adsorption capacity in this study.

1. Introduction
With the development of the global economy and increas-

ing demand for energy, many countries pay more and more
attention to the exploration and development of unconventional
natural gas, including coalbed methane, tight sandstone gas
and natural gas hydrate. Shale gas is one of the unconventional
sources of natural gas, which is trapped in shale formations
with unique characteristics of self-generation and self-storage
(Hill et al., 2007; Strapoc et al., 2010). For the low porosity
and low permeability, shale gas development has no economic
efficiency and is not widely investigated in the past many years
(Hill and Nelson, 2000; Jarvie et al., 2011). In recent years,
many advanced methods including experimental analysis tech-
nology, horizontal well drilling and simultaneous multi-stage
as well as repetitive fracturing are used for exploration and
development, which made the shale gas resource commercially
exploited in North America. Shale gas is changing the supply
pattern of energy in the world (Kuuskraa and Stevens, 2009;
Wang et al., 2014).

According to the depositional environment, shale rock can

be divided into three types, the marine shale, the marine-
terrigenous transitional shale and the terrigenous shale. Shale
gas research in North America and China focused mainly on
the marine shale reservoirs. However, there is almost no re-
search on the marine-terrigenous transitional shale reservoirs,
especially on coal measures shale. The marine-terrigenous
transitional shales are very different from marine shales in
many ways. The organic matters in marine shales, such as
marine shale in North America and South China, are mostly
type II and type I kerogen. Due to a single sTable marine
sedimentary environment, shale has a large continuous depo-
sition thickness that can reach tens or even hundreds of meters.
Marine shales are rich in carbonate up to 20%, while the clay
minerals are relatively low (Zhang et al., 2009; Zou et al.,
2010; Chen et al., 2011).

As a marine-terrigenous alternated facies basin, Ordos
basin has been reported by the geological surveys that there are
a large amount of shale gas resources in multiple sedimentary
strata. Especially, the Permo-Carboniferou shale is considered
as one of the most attractive shale gas reservoirs with a large
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thickness, high organic matter abundance, and high maturity
(Xiao et al., 2005; Hao SM et al., 2006; Wang and Li, 2011).
As one of the six major coal fields of Shanxi province, Hedong
coal field is located in the eastern Ordos basin. A considerable
amount of researches have been made on exploration and
development for coal and coal-bed methane (Wei et al., 1998;
Feng et al., 2002; Sheng et al., 2004; Xie et al., 2015; Fu
et al., 2016). The shale reservoirs developed well in Hedong
coal field and show good gas concentration indicated by past
experience in exploration and development of coal and coal-
bed methane. The shale gas resources in Hedong coal field
are predicated to be approximately 1.43× 1012 m3 and the
Transitional Taiyuan formation shale (TYS) in Daning-Jixian-
Xiangning area is regarded as the potential shale gas play
according to nationwide survey of shale gas resource potential
evaluation and favorable area optimization (2009-2011) by the
Ministry of Land and Resources of Oil and Gas Resources
Strategic Research Center of China.

However, shale gas exploration in Hedong coal field is just
in the very early stage, there is not sufficient detailed data in
the literature to describe the features of this marine-continental
transitional shale. To reduce exploration risk and increase
economic feasibility, it is important to research the properties
of shale gas reservoirs and determine the characterization of
the shale in Hedong coal field. In this study, we took advantage
of shale cores from Taiyuan formation in well SL-1 (Fig. 1)
and conduct their geological and geochemical evaluations by
petrographical, mineralogical and petrophysical analysis. The
thickness, the total organic carbon (TOC) content, thermal
maturity, mineralogy, porosity, permeability, gas content, gas
adsorption capacity for the TYS were characterized with a
series of experimental data. The goal of our understanding is
to make an integrated research on the Upper Carboniferous
Taiyuan formation shale gas reservoirs in Hedong coal field.

2. Geological setting
Located in the eastern Ordos basin, the Hedong coal field,

which is 400 km in length and 60 km in width, covers an area
of 17,000 km2 (Fig. 1). Cambrian, Lower Ordovician, Upper
Carboniferous, Permian, Mesozoic and Cenozoic are main
sedimentary strata deposited on the Pre-Cambrian metamor-
phic basement in Hedong coal field, among which the Upper
Carboniferous Taiyuan formation is an important coal-bearing
formation with a thickness of 50-130 m. Taiyuan formation
deposits in the marine-terrigenous transitional environment
where the coal, shale and sandstone are associated and the
shale seams have a sTable thickness.

The eastern Ordos basin was subjected to four orogenies
after the deposition of the Taiyuan formation: the Indosinian,
Early Yanshanian, Middle-Late Yanshanian and Himalayanian
successively, and as a result the eastern Ordos basin is a gentle
monocline with SW dip direction and an average dip angle of
6.0 degrees (Guo et al., 1998; Li et al., 2010; Zhao et al.,
2010). Well SL-1 is a shale gas exploration well drilled in
Hedong coal field, the purpose of which is to uncover the shale
gas development potential of marine-terrigenous transitional
shale seams. The lithological column of the Taiyuan formation

in Well SL-1 can be seen in Fig. 2. There are 11 sTable shale
seams distributing in Tai 1, the Tai 2 and the Tai 3.

3. Samples and experiment methods

3.1 Samples

Based on drilling data, core observation and shale distri-
bution, a total of 33 core samples (SL01-SL33) were taken
from 11 shale seams of Taiyuan formation in well SL-1. The
locations of these samples are shown in Fig. 2.

In this study, to describe the geochemical and petro-
physical characterization of the TYS, total organic carbon
(TOC) content, vitrinite reflectance (Ro), kerogen type in-
dex (TI), mineralogy (X-ray diffraction, XRD), Hg poros-
ity, Brunauer-Emmett-Teller (BET) surface area and Barrett-
Joyner-Halendar (BJH) volume, gas content, gas adsorption
capacity and permeability were determined by a series of
experiments. In addition, visual evaluation via thin section,
Rock-Eval pyrolysis and scanning electron microscopy (SEM)
were also conducted.

3.2 Methods

33 samples were tested for TOC with the Eltra CS-800
carbon-sulfur analyzer in line with the state standard of GB/T
19145-2003. The gas content of these same samples were also
measured by Chinese National Standard GB/T 19559-2008.
The core samples were immediately put into desorption can-
isters and were taken to laboratory at the reservoir temperature
(45 ◦C) for experiment.

Pyrolysis experiment was conducted on 13 samples with a
Jinpu OG-2000V on the basis of GB/T 18602-2012. Samples
were crushed (0.07-0.15 mm) and 100 g powdered samples
were firstly heated to 300 ◦C and remained for 3 mins, then
they are continued to be heated to 600 ◦C at 25 ◦C/min. S1,
S2, S3 and Tmax were obtained.

Vitrinite reflectance (Ro) was conducted on 13 samples
with Leica DM4500p/DFC450C.

13 powdered samples were analyzed following the
petroleum industry standard SY/T 5163-2010 by a Rigaku
Smartlab XRD analyzer for the mineralogical composition.
The primary minerals such as clay, quartz, feldspar and pyrite
were determined.

Porosity was conducted on 13 samples by Hg porosime-
try with a QUANTACHROME POREMASTER 33 Mercury
Porosimeter. The pressure of Hg was increased from 0 to 235
Mpa at 20 ◦C and the porosity was calculated by the mercury
injection data.

Gold V-Sorb 2800TP was used in N2 adsorption-desorption
experiment with the standard GB/T 21650.3-2011. The meth-
ods of BJH and BET were employed for calculating pore
volume and specific surface area, respectively (Barrett et al.,
1951; Zhang et al., 2015; Cai et al., 2016). An ULTRA-
PERMTM200 permeameter was used to measure the perme-
ability of 13 samples.

Methane adsorption isotherms were determined on 13
samples through a TerraTek-300 at constant temperature (45
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Fig. 1. The location of well SL-1 in Hedong coal field.

Fig. 2. Lithological column and the locations of the cores in well SL-1.
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Table 2. Characteristics of organic matter and gas adsorption capacity for 13 TYS samples.

Samples Ro (%) TI VL (ml/g) PL (Mpa)

SL01 1.71 -71 0.42 0.26

SL04 1.72 -78 0.94 0.35

SL07 1.81 -50 1.02 1.56

SL09 1.84 -83 1.08 0.23

SL10 1.85 -85 0.77 0.46

SL13 1.79 -69 0.33 0.62

SL16 1.86 -76 0.95 0.8

SL20 1.82 -73 0.65 1.14

SL22 1.87 -82 0.45 0.22

SL26 1.94 -81 0.55 1.28

SL28 1.96 -78 0.59 2.03

SL31 2.1 -78 0.39 0.9

SL33 1.94 -76 0.50 0.97
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Fig. 3. The relationship between Ro and depth.

◦C). The Langmuir isotherm method was used to measure the
gas absorbed capacity, V =VLP/(PL +P), V is the volume of
absorbed gas which is the maximum adsorption capacity of the
absorbent, VL represents the Langmuir monolayer volume, P
is gas pressure, PL is the Langmuir pressure, under which the
gas adsorption volume (V ) equals half of Langmuir volume
(VL) (Langmuir, 1918; Brunauer et al., 1938).

The micropores observation was performed with a Tes-
can/OXFORD SEM (Abouelresh and Slatt, 2012).

4. Results and discussions

4.1 Depositional environment

According to the characterizations of lithology, fossil flora
and abundance of organisms, the Taiyuan formation is re-
garded as a lagoon-tidal flat depositional system (Jie et al.,
2010). The total thickness of the TYS in well SL-1 is 51.84
m, of which Tai 3 is 22.15 m, Tai 2 is 21.79 m, and Tai 1 is
7.90 m. There is no coal seam in Tai 3, and shales in Tai 3

are gray or black. The thickest shale of Tai 3 is 8.29 m. As
for Tai 2, it has 3 coal seams and 4 dark grayish black shales
which deposit alternately with coal seam as floors or roofs of
coal seam. As is shown in Fig. 2, the thickest shale of the
Taiyuan formation is 8.90 m in Tai 2. In Tai 1, there are 2
light grayish black shales and 2 thin coal seams.

Single continuous deposition thickness of TYS is thinner
than 10 m, which is harmful to development of shale gas in
Hedong coal field. Given the TYS deposits with coal seam,
sandstone and limestone, scheme of co-exploration and co-
development on coal-bed gas, tight sand gas and shale gas in
Hedong coal field is an effective way to develop coal measure
gas.

4.2 Geochemical characteristics

TOC contents, vitrinite reflectance values (Ro) and kerogen
index (TI) for samples from well SL-1 are presented in Tables
1 and 2. TOC of the TYS samples varies from 0.29 to 11.87%
with an average of 2.91%. Affected by coal seam, TOC of Tai
2 ranges from 1.90% to 11.87% with a mean value higher than
4.5%, which is greater than Tai 1 (2.35%) and Tai 3 (1.40%).
The sample with the largest TOC value (11.87%) is from the
floor of number N0. 7 coal in Tai 2. From shale gas exploration
and development experience in the United States, only when
the TOC concentration is higher than 2%, will shale have a
commercial development potential. Thus, Tai 1 has certain
resource potential while Tai 2 enjoys a better level (Boker
et al., 2007; Jiang et al., 2010).

Ro is a key indicator to assess thermal maturity of or-
ganic matter and is correlated with hydrocarbon generation.
In general, petroleum generation windows of immature, oil,
condensate/wet gas, and dry gas correlate to approximate Ro
ranges of 0.5%-0.7%, 0.55%-1.3%, 1.3%-2.0%, and > 2.0%,
respectively. Ro value for all TYS samples varies from 1.71%
to 2.10% with an average value of 1.87%. It can be seen from
Fig. 3 that Ro is increasing with the burial depth as a result of
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Table 1. TOC and gas content for 33 samples from Hedong coal field.

Member Samples Depth (m) TOC (%) Gas content (cm3/g)

Tai 1 SL01 1,473.0 1.09 1.01

Tai 1 SL02 1,473.3 1.12 0.86

Tai 1 SL03 1,474.7 4.50 1.56

Tai 1 SL04 1,478.0 2.88 1.83

Tai 1 SL05 1,480.9 2.65 1.95

Tai 2 SL07 1,498.7 11.87 2.96

Tai 2 SL08 1,499.0 7.26 2.92

Tai 2 SL09 1,450.3 8.34 2.41

Tai 2 SL10 1,507.2 3.31 0.98

Tai 2 SL11 1,509.2 2.03 1.01

Tai 2 SL12 1,510.6 2.01 0.95

Tai 2 SL13 1,516.5 0.91 1.01

Tai 2 SL14 1,520.0 3.32 1.56

Tai 2 SL15 1,522.6 3.00 2.14

Tai 2 SL16 1,525.8 6.25 2.91

Tai 2 SL17 1,527.1 4.09 2.06

Tai 2 SL18 1,528.4 3.79 2.15

Tai 2 SL19 1,530.4 3.36 1.86

Tai 2 SL20 1,534.6 2.12 0.93

Tai 2 SL21 1,534.6 1.90 1.95

Tai 3 SL22 1,540.5 2.51 1.79

Tai 3 SL23 1,542.2 2.75 0.98

Tai 3 SL24 1,544.3 2.07 1.16

Tai 3 SL25 1,544.5 1.33 1.05

Tai 3 SL26 1,555.2 2.68 1.86

Tai 3 SL27 1,555.8 3.33 1.98

Tai 3 SL28 1,562.2 0.62 0.65

Tai 3 SL29 1,563.3 1.65 1.03

Tai 3 SL30 1,564.3 1.35 0.81

Tai 3 SL31 1,574.3 0.73 0.71

Tai 3 SL32 1,575.0 0.29 0.41

Tai 3 SL33 1,579.5 0.61 0.77

TYS in this area mainly experienced plutonic metamorphism.
The Ro can be directly obtained by testing equipment, it can
also be calculated with the method Ro= 0.0180×Tmax −7.16
as well (Tissot and Welte, 1978; Jarvie and Lundell, 2001).
Tmax is the required temperature for kerogen cracking and
can be used as an additional chemical assessment to provide
confirmation of the visual measurement. When Tmax is from
483.37 to 510.09 ◦C with a mean value of 496.77 ◦C (Table 4),
the corresponding Ro is from 1.54% to 2.02%, which is close
to but a little less than measured by vitrinite reflectance (Ro).
Fig. 4 shows that TYS has higher TOC when Ro is between
1.8% and 1.9%, i.e. the burial depth varies from 1495 to 1540
m.

Normally, organic matter is classified into four types on
the basis of macerals: sapropelic (I), humic-sapropelic (II1),

sapropelic-humic (II2), and humic (III) (Table 4). Visual
assessments by the microscope indicate that the kerogen of
TYS samples consists mainly of terrestrial organics with a
small amount of sapropelic substance (Xiao et al., 2005).
The kerogen type index (TI), which is used to decide the
kerogen type by counting percentage compositions of different
macerals, varies from -50 to -87, with a mean value of -76.
The type of organic matter for TYS in Hedong coal field can
be determined as typical humic (III), which is in accordance
with those previous researches on TYS in eastern Ordos basin.

The kerogen type can also be obtained by the value of
HI from the Rock-Eval data. HI represents the amount of
thermogenic hydrocarbon in organic matter. The HI values for
all samples vary from 11.83 to 36.56 mg/g (Table 3), indicating
that the kerogen type of TYS from Hedong coal field is type
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Table 3. Rock-eval results for 13 TYS samples.

Samples S1 +S2 (mg/g) S3 (mg/g) Tmax (◦C) HI (mg/g) QI (mg/g)

SL01 0.375 6.402 489.51 32.72 587.29

SL04 0.609 8.210 483.37 20.56 285.07

SL07 1.505 9.955 498.17 12.52 83.87

SL09 1.022 11.729 492.43 11.83 140.64

SL10 0.431 9.180 496.25 12.72 277.34

SL13 0.789 11.213 493.51 23.26 337.75

SL16 0.843 10.770 489.59 13.18 172.32

SL20 0.752 9.801 487.34 34.25 462.32

SL22 0.580 11.324 498.76 22.37 451.14

SL26 0.667 10.845 504.09 24.35 404.65

SL28 0.233 5.402 502.09 36.56 871.21

SL31 0.279 5.309 510.09 35.67 727.27

SL33 0.224 5.031 503.34 36.00 824.77

Table 4. Organic matter type based on the macerals and Rock-eval (Huang et al., 1984).

Kerogen type Sapropelic (ap) Humic-sapropelic (µ1) Sapropelic-humic (a2) Humic (µm)

Maceral of kerogen (TI value) > 80 40-80 0-40 -120-0

Rock-Eval (HI mg/g) > 500 350-500 100-350 < 100
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Fig. 4. The plot of TOC vs. Ro.

III (Table 4), which is in accordance with the result of visual
assessments under the microscope.

The first peak of pyrolysis S1, which is absorbed on the
surface of shale or as free gas exists in the pore of shale, is the
amount of volatile hydrocarbon at less than 300 ◦C. S2 is the
amount of pyrolysis compound. S3 represents the amount of
CO2 generated. As a genetic potential index, S1 +S2 is used
to assess the hydrocarbon-generating potential. Table 3 shows
that S1+S2 ranges from 0.224 to 1.505 mg/g (averaging 0.639
mg/g), which has an obviously positive relationship with TOC
(Fig. 5). Compared with S2, S1 is so small that S2 plays the
decisive role for genetic generation in the TYS.
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Fig. 5. Relationship between TOC and S1 +S2.

Based on the values of S1 + S2, shale can be classified
into four grades: better (> 6 mg/g), good (2-6 mg/g), poor
(0.5-2 mg/g), not (< 0.5 mg/g). By the standard, TYS from
Hedong coal field are the poor kind and possesses very low
hydrocarbon-generating potential with the organic matter in
a highly mature stage. Although a large amount of oil and
gas may have been generated in its geological history, Hunt
suggested that large quantities of gas may be still potentially
generated from secondary cracking of hydrocarbon in ther-
mally mature reservoir. With the development experience of
Barnett shale in Newark East Field as an example, cracking
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Table 5. Mineralogical composition of the TYS samples.

Samples Quartz (%) Feldspar (%) Carbonate (%) Clay (%) Siderite (%) Pyrite (%) Brittleness index (IB) (%)

SL01 64.1 3.1 32.8 67.2

SL04 56.5 2.0 41.5 58.5

SL07 34.6 4.6 60.8 39.2

SL09 46.5 49.7 3.8 50.3

SL10 36.2 1.4 62.4 37.6

SL13 53.7 46.3 53.7

SL16 50.5 2.8 46.7 53.3

SL20 42.1 7.2 50.7 4.0 51.3

SL22 34.3 65.7 34.3

SL26 54.5 45.5 54.5

SL28 39.6 60.4 39.6

SL31 30.4 70.6 30.1

SL33 35.5 64.5 35.5

gas was considered to be a primary source (Hunt et al., 1996;
Jarvie et al., 2007).

With the highly mature organic matter (1.71%<
Ro <2.10%), the TYS has evolved into the thermogenic gas
and dry gas window. Despite the high maturity of the shale,
the TOC contents are still relatively high (> 2.0%). Coal
seam is the controlling factor influencing the TOC, which is
the uniqueness of TYS from Hedong coal field.

4.3 Mineralogy

Brittleness of shale is a major index in reservoir study
which can provide a theoretical basis for hydraulic fracturing.
The higher the content of brittle minerals shale has, the easier
the crack is caused by hydrofracture which is conductive to
shale gas seepage. In general, quartz, feldspar, carbonate and
pyrite are regarded as high brittle minerals, while clay minerals
are with low brittleness. The brittleness index (IB) was defined
to describe the content of brittle mineral in shale and the
brittleness index was determined by the following equation
(Chen and Xiao, 2013):

IB = (quartz+ f eldspar+ carbonate+ siderite+
pyrite)/(quartz+ f eldspar+ carbonate+ clay+ siderite
+ pyrite)×100%

XRD results of TYS in Hedong coal field are shown in
Table 5. It can be seen from the data that the primary minerals
are clay minerals and quartz as well as a small quantity of
feldspar, carbonate, and pyrite. Clay minerals, composed of
mainly kaolinite, illite, and a small amount of chlorite, vary
from 32.8% to 70.6% (average 53.7%). The contents of quartz
are between 30.4% and 64.1% (average 44.5%). Feldspar was
found in some TYS samples and its content is less than 5%.
The content of carbonate (mainly calcite and dolomite) in TYS
samples is no more than 7.5% which is much smaller than the
marine shale in North America and in southern China. The
fact that pyrite and siderite can be detected in some samples
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Fig. 6. Plot of porosity vs. permeablity.

(Fig. 6) reveals that TYS was formed in anoxic (reduction)
sedimentary environment. The IB of TYS is from 28.61% to
67.20% with an average value 46.5%, which is adequate for
hydraulic fracturing to produce cracks (Based on shale gas
E&P experience, the brittle mineral content should be over
40%).

The quartz content and clay mineral content vary in a wide
range. The clay minerals are relatively high compared with that
of marine shale, while the carbonate content is quite low.

4.4 Porosity and permeability

According to the International Union of Pure and Applied
Chemistry (IUPAC) classification of porous materials, pore can
be divided into three types base on pore diameter: micropores
(< 2 mm), mesopores (2-50 mm), and macropores (> 50
mm). The macropores give storage room for free gas, while
micropores and mesopores can provide a large surface area for
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Table 6. Pore characteristics of TYS samples.

BET surface BJH pore volume BJH pore volume BJH pore volume Average pore Hg porosity Permeability
Samples

area (m2/g) (<10 nm) (cm3/100g) (<50 nm) (cm3/100g) (cm3/100g) size (nm) (%) (µd)

SL01 7.00 0.42 1.00 1.59 9.09 4.01 11.70

SL04 12.44 0.73 1.56 2.07 6.64 4.24 6.62

SL07 11.25 1.32 1.89 2.26 7.43 2.65 12.74

SL09 13.56 1.05 2.13 2.90 8.12 3.09 5.67

SL10 8.96 0.78 1.75 2.14 9.57 2.37 3.07

SL13 2.03 0.19 0.64 0.98 26.88 1.97 6.51

SL16 9.32 0.83 1.22 1.81 7.77 5.77 3.86

SL20 7.45 0.47 0.89 1.92 9.31 4.35 5.27

SL22 6.26 0.30 0.82 1.53 9.77 2.35 4.76

SL26 7.89 0.44 0.92 1.49 7.45 3.61 4.46

SL28 7.01 0.41 0.79 1.18 10.73 1.86 3.55

SL31 4.38 0.28 0.68 1.17 11.20 1.12 6.69

SL33 5.06 0.23 0.57 1.23 9.85 1.56 4.66

(a) (b) (c)

(d) (e) (f)

Fig. 7. SEM picture of samples: (a) Clay interpartilce pores (SL08); (b) Interparticle pores (SL11); (c) Organic-matter pores (SL09, average<100 nm); (d)
Organic-matter pores (SL18); (e) Quartz Intraparticle pores (SL25); (f) Pyrite framboids (SL20).
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Fig. 8. (a) Plot of pore size distribution for seven samples; the relationships between (b) TOC and BJH pore volume (< 10 nm); (c) TOC and BJH pore
volume (< 50 nm); (d) quartz and BJH pore volume; (e) clay minerals and BJH pore volume.
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Fig. 9. The relationships between: (a) TOC and BET surface area; (b) TOC and BJH volume.

adsorbed gas (Rouquerol et al., 1994; Yang et al., 2014). As
shown in Table 6, the Hg porosity of TYS in Hedong coal field
varies between 1.12% and 5.77% with an average of 3.00%.
The values of permeability for TYS samples are smaller than
0.1 md (varies from 3.07 to 12.7 µd), indictating that TYS
is the ultra-low permeably shale. Although higher porosity
is generally associated with the better permeable sediments
(Firouzi et al., 2014), there is no correlation between the
porosity and permeability, which illustrates the complexity of
pore structure in shale (Fig. 6).

Numerous studies have shown that the porosity of shale
is significantly affected by mineral compositions. According
to the pore occurrence and pore association with mineral
particles under SEM, three types of pore are identified in
TYS: interparticle pores, intraparticle pores and organic-matter
pores (Fig. 7) (Loucks et al., 2012; Wu et al., 2014; Zhang et
al. 2016). The SEM evaluation shows that pores in TYS are
mainly interparticle pores and organic-matter pores (varying
from several nanometers to a few microns), which suggests
that mineralogical composition and TOC are the important
controlling factors for porosity of the TYS.

The average value of BET surface area for TYS is 7.89
m2/g (from 2.13 to 13.56 m2/g). The BJH pore volume is
from 1.17 to 2.90 ml/100g with an average of 1.17 cm3/100g.
The pore volume with pore size less 10 nm is from 0.19
to 1.32 cm3/100g and the pore volume with pore size less
than 50 nm is from 0.57 to 2.03 cm3/100g. The average pore
volume (2.00 cm3/100g) of Tai 2 is higher than that of Tai 1
(1.85 cm3/100g) and Tai 3 (1.32 cm3/100g), which is similar
to the Longmaxi shale in Sichuan, China (Nie and Zhang,
2011). Both the BET surface area and the pore volume have
an obvious positive relation with TOC (Fig. 9).

The pore size distributions for some samples obtained
from low-pressures N2 adsorption data with BJH model were
shown in Fig. 8(a). TYS samples have a wide range of PSDs
from one or two to hundreds nanometers. Most pores in TYS
samples are no more than 50 nm and are mainly less than 10

nanometers. There is a main peak at about 2 nm for many
TYS samples and other peaks are between 3 and 4 nm. As
the Table 6 showed that the pore volume (less than 10 nm)
and the pore volume (less than 50 nm) account for the BJH
pore volume of 30% and 65%, respectively. The pore size of
TYS calculated by the BJH model is between 6.64 nm and
26.88 nm with a mean value of 10.29 nm.

The pores formation and development in shale are mainly
affected by the minerals composition and TOC. As the Figs.
8(b) and 8(c) showed that TOC has an obvious positive
relationship with BJH pore volume (< 10 nm) (Fig. 8(b)),
a moderate positive relationship with BJH pore volume (< 50
nm) (Fig. 8(c)), and a weak positive correlation with total BJH
pore volume (Fig. 9). These relationships indicate that TOC
is favorable for micropores development. Due to deposition
in the same sedimentary environment, the shale from coal-
bearing stratum has same sediment source with coal. Organic
matters in TYS samples are also same with coal, which are
classified as type III kerogen. TYS also undergoes stages
of sedimentation and deterioration, such as stages of peat,
lignite, bituminous coal and anthracite. The organic matters
in TYS also have macromolecular structure in high maturity
or over maturity stage. This macromolecular is constructed of
a series of aromatic cores with varying amounts of aliphatic
side-chains or functional groups. During diagnosis of coal-
shale, the aromatic cores in organic matters are continuously
condensed into a larger macromolecular. The result is that
hydrogen gas expelled from the organic matters and various
shapes of nano-scale pores, mainly micorpores, are produced.
The Ro for the TYS is between 1.71% and 2.10%, which is
the peak of gas generation for type III kerogen.

As the main mineral component of TYS samples, neither
quartz nor clay minerals have determined relationships with
BJH pore volume (Figs. 8(d) and 8(e)), which indicates that
mineral compositions play a complex role in the formation
and development of pores in TYS samples.
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4.5 Gas content and methane adsorption capacity

As a self-contained source system, abundant gas can be
stored in pores and natural fractures, adsorbed on the organic
matter and mineral surface or dissolved in kerogen and bitu-
men. The gas content, which can be acquired by measuring
the gas released from core samples, is used as a key index to
determine whether it has economic benefits or has a resource
potential (Tang et al., 2011).

The results for gas content tests of TYS in Hedong coal
field are summarized in Table 1. The values of gas content vary
from 0.41 to 2.96 ml/g (1.52 ml/g on average) and the values
of the Tai 2 are from 0.93 to 2.96 ml/g and more than 50%
samples are higher than 2.00 ml/g. As the marine-terrigenous
transitional shale, the TYS in Hedong coal field has a high gas
concentration, especially the samples from Tai 2. Both TOC
content and specific surface area have a positive correlation

with gas content (Fig. 10). High TOC value is conductive for
hydrogen generation and development of micro-pores or nano-
scale pores, which can provide enough storage space for shale
gas accumulation.

In this work, the methane adsorption was conducted on air
dry shale powders under the reservoir temperature (45 ◦C)
(Fig. 11). It can be seen in Table 2, the VL was between
0.39 and 1.72 ml/g, averaged 0.73 ml/g. Compared with the
methane adsorption capacity of the Low Cambrian shale from
Sichuan basin (2.8 ml/g on average) and northwest Guizhou
province (2.28 ml/g on average) (Clarkson et al., 2013; Zhang
et al., 2016), the value of TYS is lower without considering
experiment condition and moisture content of samples.

Many previous studies have reported that the methane
adsorption capacity is closely related to organic matter content,
it is also true of TYS samples from Hedong coal field. As Figs.
11 and 12(a) illustrated, the values of VL have a strong positive
correlation with TOC content and the large gas adsorption
capacity is generally associated with the organic-rich samples
(Ross and Bustin, 2007; Ross and Bustin, 2008; Clarkson et
al., 2012).

It is thought that the methane adsorption capacity of shale
is also dependent on mineral components and there was a
positive relationship between the gas sorption capacity and
the clay minerals. However, clay minerals have a unique
relationship with Langmuir volume VL in this study. As shown
in Fig. 12(b), the clay content relates positively with VL when
its value is less than 50% and has a negative association
when the value of clay content ranges from 55% to 70%.
The clay minerals, especially illite, can provide huge surface
area and have great sorption energy which contributes to the
gas adsorption. So VL rises with the clay content increasing
when clay minerals are in a certain range. As the clay contents
ascend further, the TOC content and brittle minerals are corre-
spondingly decreasing. Clay minerals may fill the micorpores
and absorb more moisture since the clay minerals in TYS are
very tiny, which is unfavorable for methane sorption, thus, the
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Fig. 12. Correlation plots between: (a) TOC and gas sorption capacity (VL); (b) clay and BET surface area; (c) BET surface area and VL.

gas sorption capacity decreases as the value of clay content
is above 55%. Theoretically, the clay minerals have positive
effects on methane sorption capacity, but other factors such
as TOC, moisture content, pores, etc. affect also the gas
sorption capacity. Therefore, there are a variety of relationships
between clay minerals and gas sorption capacity in reality (Lu
et al., 1995; Clarkson et al., 2012; Ji et al., 2012). A good
correlation between BET surface area and VL is shown in Fig.
12. The VL increases with the increasing BET surface area.
Greater BET surface area can provide more space for adsorbed
gas.

5. Conclusions
As the Marine-terrigenous Transitional shale, TYS samples

from Hedong coal field has the following characteristics:

1) The kerogen type of organic matters in TYS samples is
humic (III), which is different from the organic matters
in marine shale (type I or type II) in North America and
south China and is more conducive to the generation of

dry gas. Although organic matters has entered a high or
over mature stage (Ro from 1.71% to 2.10%), the TOC
is still relatively high (ranging from 0.29% to 11.87%).

2) The mineral composition is characterized by high clay
minerals, low carbonate and feldspar. Carbonates in TYS
are less than 5% on average, which is far below marine
shale (the maximum can reach 20%). As a marker of
weak reduction environment, pyrite is also found in some
TYS samples.

3) The PSDs of TYS samples has a wide range of pore
size from 2 to hundred nanometers. The dominate pore
size is between 2 and 10 nm, which accounts for 30%
of BJH pore volume. TOC is a key control factor for
pore development of TYS samples, especially for pores
less than 10 nm. The permeability of TYS samples is
between 3.05 and 12.74 µd, indicating the TYS are
ultralow permeability reservoirs. The correlation analysis
showed that permeability has no obvious relationship with
porosity.

4) The gas content of TYS is 1.52 ml/g on average (ranging
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from 0.41 to 2.96 ml/g). Meanwhile, the Langmuir value
VL ranges from 0.33 to 1.08 ml/g (0.66 ml/g on average)
which has a positive correlation with BET surface and
TOC content.

Previous studies reported that there is an abundance of
coal measure gas including coal-bed methane, sandstone gas
in Hedong coal field. It may be unfavorable for shale gas de-
velopment separately as a result of small single layer thickness
(the largest < 10 m). However, it will have a great potential
to co-explore and co-develop the coal measures gas in view
of the fact that the TYS deposited with coal seam, tight sand
stone and even thin limestone.
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