Open Access Articles
  • Volume 5 (2021)
  • Volume 4 (2020)
  • Volume 3 (2019)
  • Volume 2 (2018)
  • Volume 1 (2017)

Contact Us

Ausasia Science and Technology Press, Australia

Press address: Unit 3/3 Peace St, Box Hill South, Melbourne, Victoria 3128, Australia

Press email:

Press phone: 0421672696

Journal office email:

Our Visitors

370723 visitors Look details

A new scaling equation for imbibition process in naturally fractured gas reservoirs

Fatemeh Ghasemi, Mojtaba Ghaedi, Mehdi Escrochi

(Published: 2020-03-13)

Corresponding Author and Email:Mojtaba Ghaedi,; ORCID:

Citation:Ghasemi, F., Ghaedi, M., Escrochi, M. A new scaling equation for imbibition process in naturally fractured gas reservoirs. Advances in Geo-Energy Research, 2020, 4(1): 99-106, doi: 10.26804/ager.2020.01.09.

Article Type:Original article


Spontaneous imbibition is an important mechanism in naturally fractured reservoirs. Efforts were made to study matrix-fracture interaction where matrix blocks are surrounded by water-filled fractures by developing the scaling groups. Despite previous studies about the scaling groups introduced to characterize the imbibition process in oil reservoirs, gas reservoirs have been less considered. In this paper, the effects of various factors on the spontaneous imbibition in the gas reservoirs were investigated and by inspectional analysis, a modified scaling equation was introduced. The proposed scaling equation includes a variety of fluid and rock parameters. Furthermore, the efficiency of the presented scaling equation was tested in several cases with considerable different fluid and rock properties. The imbibition process in these cases were simulated by means of a realistic procedure. A comparison of the performance results of the new scaling equation for the defined cases showed much better accuracy for the imbibition scaling in the gas reservoirs by means of the presented scaling group in this work.

Keywords:Naturally fractured, gas reservoir, imbibition, inspectional analysis, scaling.


Download this Manuscript:PDF

Copyright ©2016. All Rights Reserved